
VLDB Journal manuscript No.
(will be inserted by the editor)

Task-Assignment Optimization in Knowledge Intensive
Crowdsourcing

Senjuti Basu Roy · Ioanna Lykourentzou · Saravanan

Thirumuruganathan · Sihem Amer-Yahia · Gautam Das

Received: date / Accepted: date

Abstract We present SmartCrowd, a framework

for optimizing task-assignment in knowledge-intensive

crowdsourcing (KI-C). SmartCrowd distinguishes it-

self by formulating, for the first time, the problem of

worker-to-task assignment in KI-C as an optimization

problem, by proposing efficient adaptive algorithms to

solve it and by accounting for human factors, such

as worker expertise, wage requirements, and availabil-

ity inside the optimization process. We present rigor-

ous theoretical analyses of the task-assignment opti-

mization problem and propose optimal and approxima-

tion algorithms with guarantees, which rely on index

pre-computation and adaptive maintenance. We per-

form extensive performance and quality experiments

using real and synthetic data to demonstrate that the

SmartCrowd approach is necessary to achieve effi-

The work of Saravanan Thirumuruganathan and Gautam
Das is partially supported by NSF grants 0812601, 0915834,
1018865, a NHARP grant from the Texas Higher Education
Coordinating Board, and grants from Microsoft Research and
Nokia Research.

S. Basu Roy
University of Washington Tacoma
E-mail: senjutib@uw.edu

I. Lykourentzou
CRP Henri Tudor/INRIA Nancy Grand-Est
E-mail: ioanna.lykourentzou@{tudor.lu,inria.fr}

S. Thirumuruganathan
UT Arlington
E-mail: saravanan.thirumuruganathan@mavs.uta.edu

S. Amer-Yahia
CNRS, LIG
E-mail: sihem.amer-yahia@imag.fr

G. Das
UT Arlington
E-mail: gdas@uta.edu

cient task assignments of high-quality under guaranteed

cost budget.

Keywords collaborative crowdsourcing · optimiza-

tion · knowledge-intensive crowdsourcing · human

factors

1 Introduction

Knowledge-intensive crowdsourcing (KI-C) is acknowl-

edged as one of the most promising areas of next-

generation crowdsourcing [29], mostly for the critical

role it can play in today’s knowledge-savvy economy.

KI-C refers to the collaborative creation of knowledge

content (for example Wikipedia articles, or news ar-

ticles) through crowdsourcing. Crowd workers, each

having a certain degree of expertise, collaborate and

“build” on each other’s contributions to gradually in-

crease the quality of each knowledge piece (hereby re-

ferred to as “task”). Despite its importance, no work

or platform so far optimizes KI-C, a fact which often

results in poor task quality and higher-than-expected

costs, thus undermining the reliability of crowds for

knowledge-intensive applications.

In this paper we propose SmartCrowd, an opti-

mization framework for knowledge-intensive collabora-

tive crowdsourcing that aims at improving KI-C by op-

timizing one of its fundamental processes, i.e., worker-

to-task assignment, while taking into account the dy-

namic and uncertain nature of a real crowdsourcing en-

vironment [43].

Consider the example of a KI-C application offer-

ing news articles on demand as a service to interested

stakeholders, such as publication houses, blogs, individ-

uals, etc. Several thousands of workers are potentially

2 Senjuti Basu Roy et al.

available to compose thousands of news articles collab-

oratively. It is easy to imagine that such an application

needs to judiciously assign workers to tasks, so as to

ensure the delivery of high-quality articles while being

cost-effective. Two main challenges need to be inves-

tigated: 1) How to formalize the KI-C worker-to-task

assignment problem? 2) How to solve the problem ef-

ficiently so as to warrant the desired quality/cost out-

come of the KI-C platform, while taking into account

the unpredictability of human behavior and the volatil-

ity of workers in a realistic crowdsourcing environment?

The paper is structured as follows: First, we for-

malize KI-C worker-to-task assignment as an op-

timization problem (Section 2). In our formulation,

the resources are the worker profiles (knowledge skill

per domain, requested wage) and the tasks are the news

articles (each having a minimum quality and a maxi-

mum cost requirement, as well as the need for certain

skills).1 The objective function is formalized so as to

guarantee that each task surpasses its quality thresh-

old, stays below its cost limit, and that workers are not

over or under utilized. Given the innate uncertainty in-

duced by human involvement, we also use probabilistic

modeling to include a third human factor, i.e. the work-

ers’ acceptance ratio2, in the problem formulation.

Then, we argue that it may be prohibitively ex-

pensive to assign workers to tasks optimally in real

time and reason about the necessity of pre-computation

for efficiency reasons. We propose index design as a

means to efficiently address the KI-C optimiza-

tion problem (Section 3). One of the novel contribu-

tions of this work is proposing the pre-computation of

crowd indexes (C-dex) for KI-C tasks, to be used effi-

ciently afterwards during the actual worker-to-task as-

signment process. We show how KI-C tasks could bene-

fit from these pre-computed crowd indexes to efficiently

maximize the objective function.

Third, we examine the problem under dynamic

conditions of the crowdsourcing environment,

where new workers may subscribe, existing ones may

leave, worker profiles may change over time, and work-

ers may accept or decline recommended tasks. To

tackle such unforeseen scenarios, SmartCrowd pro-

poses the adaptive maintenance of the pre-computed in-

dexes, while respecting worker non-preemption.3

1 With the availability of historical information, worker
profiles (knowledge skills and expected wage) can be learned
by the platform. Profile learning is an independent research
problem in its own merit, orthogonal to this work.
2 Acceptance ratio of a worker is the probability that she

accepts a recommended task.
3 Non-preemption ensures that a worker cannot be inter-

rupted after she is assigned to a task.

Fourth, we prove several theoretical proper-

ties of the C-dex design problem, such as NP-

Completeness (using a reduction from the Multiple

Knapsack Problem [13]), as well as submodularity and

monotonicity under certain conditions. This in-depth

theoretical analysis is critical to understand the prob-

lem complexity, as well as to design efficient principled

solutions with theoretical guarantees.

Finally, we propose novel optimal and approx-

imate solutions for the index design and main-

tenance, depending on the exact KI-C problem

conditions. Our optimal solution uses an integer lin-

ear programming (ILP) approach (Section 4). For the

case where the optimal index building or maintenance is

too expensive, we propose two types of efficient approx-

imate strategies: 1) a greedy approach (Section 5) con-

sisting of one randomized and one deterministic approx-

imation algorithm, which both need polynomial compu-

tation time and admit constant approximation factors

under certain conditions (2/5 for the randomized algo-

rithm and (1 − 1/e) for the deterministic one) and 2)

a clustering-based approximation approach (Section 6),

called C-dex+, which is based on the idea of building

and maintaining the indexes using clusters of similar

workers (a notion called “virtual worker”) instead of

the actual worker pool.

We design comprehensive experimental studies (Sec-

tion 7), both with real-users and simulations, to val-

idate SmartCrowd qualitatively and efficiency-wise.

With an appropriate adaptation of Amazon Mechani-

cal Turk (AMT), we conduct extensive quality experi-

ments involving real workers to compose news articles.

Such an adaptation needs a careful design of the val-

idation strategies, since AMT (like many other pop-

ular paid crowdsourcing platforms) does not yet sup-

port KI-C tasks. Extensive simulation studies are used

to further investigate quality and efficiency. In these,

we compare against several baseline algorithms, includ-

ing one of the latest state-of-the-art techniques [18]

for online task assignment in crowdsourcing. The ob-

tained results demonstrate that the algorithms proposed

by the SmartCrowd framework achieve 3x improve-

ment, both qualitatively and efficiency-wise, justifying

the necessity for pre-computed indexes and their adap-

tive maintenance for the KI-C optimization problem.

Our main contributions are summarized as follows:

1. We initiate the study into task assignment optimiza-

tion in knowledge-intensive crowdsourcing (KI-C),

formalize the problem, and propose rigorous theo-

retical analyses.

2. We propose the necessity of index design and dy-

namic maintenance to address the KI-C task as-

signment optimization problem. We propose novel

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 3

optimal and approximate solutions (C-dex, greedy

C-dex, and C-dex+) for index creation and adap-

tive maintenance.

3. We conduct extensive experiments on real and sim-

ulated crowdsourcing settings to demonstrate the

effectiveness of our proposed solution qualitatively

and efficiency-wise.

The rest of this paper is organized as follows. Sec-

tion 2 describes the KI-C task assignment optimiza-

tion problem, including a description of its data model,

its constraints and its objective. Section 3 presents

the SmartCrowd framework, which maps the KI-

C task assignment problem to an index design prob-

lem (C-dex design problem) and analyzes the latter

theoretically. Section 4 describes the proposed opti-

mal algorithm (C-dex-Optimal). Section 5 describes

the two greedy approximation algorithms (C-dex-

Randomized and C-dex-Deterministic) and Section 6

presents the clustering-based approximation strategy

(C-dex+). Section 7 contains the experiments, Section

8 presents the related work and Section 9 triggers a

discussion on the extensions and future perspectives.

Finally Section 10 concludes the paper.

2 KI-C Problem Settings

In this section, we describe a framework to formal-

ize knowledge intensive crowdsourcing (KI-C). KI-C is

widely considered as a key component of next gener-

ation of crowdsourcing. We refer the reader to Sec-

tion 8 for its description and a brief survey of KI-C.

For most of our paper, we use the application of collab-

orative document editing to illustrate our model and

algorithms. We detail how our framework could be uti-

lized for other popular KI-C applications such as fan-

subbing (sentence translation by fans) in Section 9.4.

2.1 Data Model

We are given a set of workers U = {u1, u2, . . . , un},
a set of skills S = {s1, s2, . . . , sm} and a set of tasks

T = {t1, t2, . . . , tl}. In the context of collaborative

document writing, skills represent topics such as

Egyptian Politics, PlayStation games, or the NSA

document leakage. Tasks represent the documents that

are being edited collaboratively.

Skills: A skill is the knowledge on a particular topic,

quantified in a continuous scale between [0, 1]. It is

associated to workers and tasks. When associated to

Notation Interpretation
U the set of n workers
S the set of m skills
T the set of l tasks
t = 〈Qt1 , Qt2 ,
. . . , Qtm ,Wt〉

a task vector with quality and
cost thresholds

u = 〈us1 , us2 , . . . ,
usm , wu, pu〉

profile of worker u, m skills,
wage, and acceptance ratio

vj value of task j
it = 〈Pi,Li〉 a C-dex for task t
I, Iv a set of C-dex, C-dex+

Cu the number of active tasks as-
signed to worker u

C1, C2 two constant weights associated
to skill and cost respectively

Xl, Xh minimum and maximum (re-
spectively) task load of a worker

Table 1: Major notations used in the paper

a worker, it represents the worker’s expertise of a

topic. When associated to a task, a skill represents the

minimum quality requirement for that task. A value of

0 for a skill reflects no expertise of a worker for that

skill. For a task, 0 reflects no requirement for that skill.

Workers: Each worker u ∈ U has a profile that is a

vector, 〈us1 , us2 , . . . , usm , wu, pu〉, of length m + 2 de-

scribing her m skills in S, her wage wu, and her task

acceptance ratio pu.

– Skill usi ∈ [0, 1] is the expertise level of worker u for

skill si. Skill expertise reflects the quality that the

worker’s contribution will assign to a task accom-

plished by that worker.

– Wage wu ∈ [0, 1] is the minimum amount of money

for which a worker u is willing to accept to complete

a given task.

– Acceptance ratio pu ∈ [0, 1] is the probability at

which a worker u accepts a task. It reflects the

worker’s availability to complete tasks assigned to

her. A value of 0 is used to model workers who are

not available (as workers who do not accept any

task).

We refer to a worker’s skill, wage expectation and ac-

ceptance ratio as human factors that may vary over the

time.

Tasks: A task t ∈ T is characterized by a vector,

〈Qt1 , Qt2 , . . . , Qtm ,Wt〉 of length m+1, which reflects

the task’s minimum quality requirement per skill and

its maximum cost (or maximum allowed wage). A task

t that is being executed has a set of contributors Ut ⊆ U
so far and it is characterized by a:

4 Senjuti Basu Roy et al.

– Current quality qti = Σu∈Utusi ∈ [0, |Ut|] for skill

si, with usi being the expertise of worker u on skill

si. The current quality qti is thus the aggregate of

the skill i of all workers who have contributed to the

task t so far.

– Current cost wt = Σu∈Utwu ∈ [0, |Ut|], with wu be-

ing the wage paid to worker u. wt aggregates the

wages of all workers who have contributed to t so

far.

Notice that in our paper, we have defined task qual-

ity as the sum of workers skills who take part in it.

This is commonly known as the additive skill aggrega-

tion model [2] that is commonly used in KI-C tasks

such as document editing, fan-subbing (sentence trans-

lation by fans). In additive skill aggregation model,

the quality of final task is proportional to the sum of

worker skills. This simple intuitive function for trans-

forming individual contributions into a collective result

has been adopted in many previous KI-C tasks[2,34],

where workers’ build on each others’ contribution by

performing edits. Of course, other aggregation measures

such as maximum, minimum, or product [2] could also

be used to compute the quality of a task. However, their

use in KI-C tasks is less obvious.

We would also like to note that the acceptance ratio

of a worker has an impact on how the current quality

and cost of a task is computed. If all the workers as-

signed to a task are available, the current quality and

cost of the task is simply the sum of worker skills and

wages respectively. However, it is possible that when

a team is formed, some of the workers might not be

available. For example, a worker u with acceptance ra-

tio of 0.5 could only be available 50% of the time. We

can extend the definition to handle this uncertainty in

a straightforward manner. We now compute the ex-

pected quality and cost of a task which is computed

by a weighted sum of worker skills and wages with their

respective acceptance ratio acting as the weight.

Workload: We assume a static workload T that rep-

resents a set of active tasks over a given time period.

Each task in the workload is associated with both mini-

mum quality requirement per skill and a maximum cost.

In the spirit of database workloads, we assume that a

crowdsourcing workload is representative of the type of

tasks handled by the crowdsourcing platform. Existing

techniques for capturing database workloads are equally

applicable for estimating crowdsourcing workloads.

2.2 Constraints

The following constraints are considered:

Table 2: Workers Profiles

Worker u1 u2 u3 u4 u5 u6

Skill 0.1 0.3 0.2 0.6 0.4 0.5
Wage 0.05 0.25 0.3 0.7 0.3 0.4
Acceptance ratio 0.8 0.7 0.8 0.5 0.6 0.9

Table 3: Task Descriptions

Task t1 t2 t3
Quality threshold 0.7 0.7 0.9
Cost threshold 1.08 1.1 2.0

– Minimum Quality: For each task t ∈ T , the

worker-to-task assignment has to be such that the

aggregated skill of assigned workers is at least as

high as the minimum skill requirement of t for each

skill. 4

– Maximum Cost: For each task t ∈ T , the aggre-

gated workers’ wage (wt) cannot exceed the maxi-

mum cost that t can pay, i.e., wt ≤Wt.

– Non-preemption. Once a worker has been as-

signed to a task, she cannot be pulled out of that

task until finished.

– Minimum/Maximum Tasks per worker: A

worker must be assigned a minimum number of Xl

tasks and no more than Xh tasks.

2.3 Objective

Given a set T of tasks and a set U of workers, the ob-

jective is to perform worker-to-task assignment for all

tasks in T , such that the overall task quality is maxi-

mized and the cost is minimized, while the constraints

of skill, cost, and tasks-per-worker are satisfied.

Example 1 We describe a running example consisting

of a minuscule version of the news article composition

task. Assume that the platform consists of 6 work-

ers to compose 3 news articles (tasks) on “Egyptian

Politics”(t1), “NSA leakage”(t2) and “US Health Care

Law” (t3). For simplicity, we assume that all tasks

belong to same topic (“Politics”) and therefore re-

quire only one skill (knowledge in politics). We also

assume that Xl = 1, Xh = 2. Worker profiles (skill,

wage,acceptance ratio) and task requirements (mini-

mum quality, maximum cost) are depicted numerically

in Tables 2 and 3. This example will be used throughout

the paper to illustrate our solution.

4 Qtj is the threshold for skill j and qtj ≥ Qtj .

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 5

3 SmartCrowd

The SmartCrowd framework maps the KI-C opti-

mization problem to a problem of index building and

maintenance. In the following we formalize the index

design problem and analyze it in-depth theoretically.

Then we highlight the need for adaptive index main-

tenance. Finally we close this section by presenting

the unified approach that all SmartCrowd algorithms

adopt towards solving the problem.

3.1 C-DEX

C-DEX Design Problem: We now formally describe

the C-Dex design problem. C-Dex stands for Crowd-

Index which is, intuitively, a pre-computation of task

assignments for a given worker pool and workload.

The pre-computed assignments facilitate faster worker

to task assignment (akin to indexing in Databases).

Given a new task, C-dex could be used to make a fast

“lookup” to find a team of workers best suited for the

task.

We start with the KI-C objective described in Sec-

tion 2.3. We define vt to denote the value of each task t

in T (in the beginning vt is 0 for every task). The task

value is associated with the current quality and cost of

the task. More specifically, task value is calculated as a

weighted linear combination of skills (higher is better)

and cost (lower is better). Also recall that each task has

a minimum skill requirement and a maximum cost bud-

get. The index associated with task t should be created

such that the aggregated skill of the assigned workers

is at least as large as the minimum skill requirement

of t for each skill 5, and that the aggregated workers’

wage does not exceed the maximum cost that t can pay

(i.e., wt ≤ Wt). Once these two hard-constraints are

satisfied, a positive value vt is associated to task t. The

objective is to design an index C-dex such that the

sum of values V = Σt∈T vt of all tasks T is maximized,

while the problem constraints, as set in Section 2.2 are

satisfied.

For a task t, its individual value vt and the global

value V of the objective function are defined in Equa-

tion 1.

Maximize V =
∑
t∈T

vt subject to: (1)

5 Qtj is the threshold for skill j and qtj ≥ Qtj .

∀t ∈ T vt =

C1 ×

∑
1≤j≤m qtj + C2 × (1− wt

Wt
)

if qtj ≥ Qtj and wt ≤Wt

0 otherwise

where C1, C2 ≥ 0 and C1 + C2 = 1.

The above formulation is a flexible incorporation of dif-

ferent skills and cost, letting the application select the

respective weights (C1, C2), as appropriate.

Since C-dex are pre-computed for future use, the

skills (or quality) and wages are computed in an ex-

pected sense considering the workers’ acceptance ratio,

instead of actual aggregates, as follows:

∀t ∈ T, ∀1 ≤ j ≤ m qtj =
∑
u∈U

ut × pu × usj

∀t ∈ T, wt =
∑
u∈U

ut × pu × wu

∀t ∈ T, ∀u ∈ U , ut ∈ {0, 1}

∀u ∈ U , Xl ≤
∑
t∈T

ut ≤ Xh

Solution Format The solution to the above prob-

lem formulation is a set I of C-dex indexes, one index

for each task t ∈ T . Each C-dex index it contains the

estimated properties Pti of its respective task t (which

include the task’s value vt, estimated quality per skill

qt1 , . . . , qtm , and final estimated cost wt) and the set Lti
of users who are assigned to the task.

We define the crowd index C-dex as follows:

Definition 1 (C-dex) A C-dex it = (Pti ,Lti) is a

pair that represents an assignment of a set of work-

ers in U to a task t. Formally, it is described by a

vector Pti of length m + 2, and a set of workers Lti.
Pti = 〈vt, qt1 , . . . , qtm , wt〉 contains the value vt of task

t, its expected total expertise qti for each skill si, and

its expected total cost wt. Lti ⊆ U contains the workers

assigned to index it.

Consider Example 1 with T = {t1, t2, t3} for

which three indexes are to be created offline. If work-

ers {u1, u2, u6} are assigned to task t1 with C1 =

C2 = 0.5, then the index for task t1 will be, it1 =

(〈0.6, 0.74, 0.58〉, {u1, u2, u6}). The expected quality of

t1 is computed by multiplying the skills of assigned

workers with their acceptance ratio. For this assign-

ment, the expected quality is 0.1 × 0.8 + 0.3 × 0.7 +

0.5 × 0.9 = 0.74. Similarly, the expected cost is com-

puted as 0.05 × 0.8 + 0.25 × 0.7 + 0.4 × 0.9 ≈ 0.58.

Finally, the value of this particularly assignment is

0.5× 0.74 + 0.5× (1− 0.58/1.08) = 0.6.

6 Senjuti Basu Roy et al.

3.1.1 Theoretical Analyses

Theorem 1 The decision version of C-dex Design

Problem is NP-Complete.

Proof Given a workload T of l tasks, a set of workers

(and their profiles), constant values C1, C2, Xl, Xh and

V, the decision version of the problem seeks if a set of l

indexes could be created (one for each task), where vt
is the value of index it, such that all constraints are sat-

isfied and the aggregated global value
∑l
i=1 v

i
t greater

than or equal to V.

It is easy to see that the problem is in NP. To prove

NP-completeness, we prove that the well known Par-

tition [13] problem is polynomial time reducible to an

instance of the C-dex Design Problem, i.e., Partition

≤p C-dex Design Problem.

The decision version of the Partition problem is as

follows: given a finite multiset A of positive integers,

can A be partitioned into two disjoint subsets A1 and

A2 such that the sum of the numbers in A1 (i.e., S(A1))

equals the sum of the numbers in A2 (i.e., S(A2)).

We reduce an instance of Partition to create an in-

stance of the C-dex Design Problem, as follows. Each

number in the multiset represents the skill of an indi-

vidual worker u (number of skill domain m = 1) and is

scaled down to a rational number between [0−1] by div-

ing it by the maximum integer (Imax) in the multiset.

We assign the wage of each u to be 0, and acceptance ra-

tio to be 1, i.e., pu = 1. The workload consists of 2 tasks

(is equal to the number of indexes). Both tasks have a

minimum and equal skill requirement, i.e., for task t,

Qt = S(A1)/Imax = S(A2)/Imax = S(A)/(2 ∗ Imax).

Since each worker does not have a cost associated, the

cost constraint Wt for task t can be set arbitrarily. Each

partition represents an C-dex and the aggregated skill

of the workers inside the index must be equal or more

than S(A1)/Imax or S(A2)/Imax. The constant weights

C1 and C2 are chosen arbitrarily, as long as C1+C2 = 1.

This creates the following instance of the C-dex

Design problem, where vj is the value of the j-th C-

dex, and V is the overall value:

V = v1 + v2

vj = C1 × qj + C2 × (1− 0

Wj
),

qj =
∑
u∈U

uj × pu × us,

wj = 0, Xl = Xh = 1,

Qj = S(A1)/Imax = S(A2)/Imax,

qj ≥ Qj ,∀j ∈ {1, 2}

Given the above instance of the C-dex Design Prob-

lem, the objective is to create 2 C-dex, such that

V = C1 × S(A1)+S(A2)
Imax

+ C2 and there exists a solu-

tion of the Partition problem, if and only if, a solution

to our instance of the C-dex Design Problem exists.

3.1.2 Effects of the Constraints on the C-DEX Design

Problem

We investigate interesting theoretical properties of the

optimization problem (Equation 1) under different con-

ditions and constraints. In particular, we investigate the

submodularity and monotonicity properties [38] of the

objective function, which are heavily used to design ap-

proximation algorithms with theoretical guarantees in

Section 5. Specifically, next we prove that our value

function vt and our objective function V are neither

submodular nor monotonic in the general case. These

results prevent the design of approximation algorithms

with theoretical guarantees for our problem in the gen-

eral case. However, under special conditions of the con-

straints the value function and the objective function

become submodular. Finally, as we show next, mono-

tonicity could be ensured for these functions, when the

weight value C2 on cost becomes 0.

Submodular Function: In general, if A is a set, a sub-

modular function is a set function: f : 2A → R that

satisfies the following condition: For every X ,Y ⊆ A
with X ⊆ Y and every x ∈ A\Y, we have f(X ∪{x})−
f(X) ≥ f(Y ∪ {x})− f(Y).

The value function vt for task t satisfies this form: it

maps each subset of the workers S from U to a real

number vt, denoting the value that we get if that subset

of workers are assigned to task t. Conversely, the global

optimization function V = Σt∈T vt is defined over a set

of sets, where each set maps an assignment of a subset

of the workers from U to a task t ∈ T with value vt.

Monotonic Function: A function f defined on non-

empty subsets is monotonic if for every X ⊆ Y, f(X) ≤
f(Y).

Theorem 2 The value function vt is not submodular

in the C-dex Design problem, if Qtj > 0,∀j ∈ {1..m}.

Proof Sketch: Without loss of generality, we ignore the

weights and the acceptance ratios of the workers for this

proof. For the simplicity of exposition imagine m = 1.

The value vt is defined both on quality and cost, but

remains 0, if qt1 < Qt1 , or wt > Wt, or both. Therefore,

for the rest of our argument, we assume an infinite cost

budget and only focus on quality. Under this assump-

tion, vt remains 0, until qt1 becomes ≥ Qt1 .

Consider a subset R ⊂ S and imagine f ′(R) < Qt1 ,

leading to vt = 0. If an element k is added to R, if

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 7

f ′(R∪ k) < Qt1 , then vt = 0. However, if f ′(S) ≥ Qt1 ,

vt > 0. Therefore, f ′(S ∪ k)− f ′(S) > 0. In such cases,

it is easy to see,

f ′(S ∪ k)− f ′(S) > f ′(R∪ k)− f ′(R). This clearly vio-

lates the submodularity condition. We omit the details

for brevity.

Theorem 3 The value function vt in the C-dex De-

sign problem is submodular but non-monotone, when

Qtj = 0,∀j ∈ {1..m}.

Proof Sketch: As long as Qtj = 0,∀j ∈ {1..m} (mean-

ing no quality threshold is provided), it could be proved

that the increase in value by adding a worker k to S is

less or equal to adding k to R, where R ⊂ S, with the

cost threshold wt ≤Wt. Therefore, the following condi-

tion of submodularity i.e., “diminishing return” holds:

f(S∪k)−f(S) ≤ f(R∪k)−f(R). At the same time, vt
could increase or decrease when a worker is added (de-

pending on whether the skill increase is more than the

cost decrease or vice versa). Hence vt is non-monotone.

Consider our running example (Example 1) and

note that the value function for task t1 will be sub-

modular but non-monotone when quality threshold is

changed to 0, i.e., Qt1 = 0, instead of 0.7.

Theorem 4 The value function vt and the objective

function V in the C-dex Design problem are submod-

ular and monotonic, when Qtj = 0,∀j ∈ {1..m} and

C2 = 0.

Proof Sketch: Consider Theorem 3 that proves the sub-

modularity property of vt when Qtj = 0. It is easy to

see that when C2 = 0, vt will only strictly increase with

the addition of workers. This ensures the monotonicity

of vt.

Next, consider our objective function V = Σt∈T vt
defined over a set of sets, where each set defines a sub-

set of workers assigned to a task t with value vt. Adding

a worker k to a set R (corresponds to task t) will im-

pact vt and therefore the overall V. Without the skill

threshold, i.e., Qtj = 0,∀j ∈ {1..m}, if k is added to S
instead, where R ⊂ S, the following condition of sub-

modularity will hold: f(S∪k)−f(S) < f(R∪k)−f(R).

Furthermore, V strictly increases when C2 = 0 and en-

sures monotonicity.

Consider our running example (Example 1) again,

and note that the value function vt1 for task t1 will

be both submodular and monotone when the quality

threshold is changed to 0, and the cost function in the

objective function (i.e., C2 × (1 − wt
Wt

)) becomes 0 by

setting C2 = 0. This means that the objective function

only wishes to maximize the skill while satisfying only

the cost threshold. Similarly, the global objective func-

tion V will become submodular as well as monotone

when all three tasks have quality threshold as 0 and

have C2 = 0.

3.2 Index Maintenance

Indexing workers in KI-C is more challenging than data

indexing for query processing, due to the human fac-

tors involed in a dynamic crowdsourcing environment.

In particular, a unique challenge that SmartCrowd

faces is that even if the most appropriate index is se-

lected for a task, one or more workers who were assigned

to the task may not be available (for example, they are

not online or they decline the task). The acceptance

ratio only quantifies an overall availability of a worker,

but not for a particular task. Therefore, SmartCrowd

needs to dynamically find a replacement for unavail-

able workers. At the same time, SmartCrowd needs

to strictly ensure non-preemption of the workers, since

it is not desirable that the workers who have already

accepted a task and are currently working on it to be

forced to stop their current assignment in order to be

reassigned to different tasks.

Furthermore, SmartCrowd has to deal with sce-

narios where new workers may subscribe to the sys-

tem any time or some existing ones may delete their

accounts. Similarly, as existing workers complete more

tasks, the system may update their profile (refine their

skills for example). How to learn the profile of a new

worker or an updated profile of an existing worker is or-

thogonal to this work. What we are interested in here

is how SmartCrowd makes use of these dynamic up-

dates, by maintaining the indices incrementally.

We will therefore need to investigate a principled so-

lution towards incremental index maintenance for four

scenarios: (1) worker replacement due to unavailability

for the task, (2) worker addition, (3) worker deletion,

(4) worker profile update.

3.3 Sketching the solution

Taking into the account the above-presented problem

characteristics, as well as it theoretical analysis, we now

proceed with sketching the solution.

SmartCrowd adopts a unified approach to solve

the C-dex design and maintenance problem and the

overall functionality of its algorithms is as follows:

– 1. Offline Phase - Index Building: A set of in-

dexes I, referred to as C-dex are pre-computed

based on a simple definition of past task workload.

This step is referred to as the offline phase.

8 Senjuti Basu Roy et al.

– 2. Online Phase - Index Use and Mainte-

nance: The pre-computed indexes are used to per-

form efficient worker-to-task assignments once the

actual tasks arrive. The pre-computed indexes are

also maintained adaptively to account for worker re-

placements, additions, deletions or profile updates,

while respecting worker non-preemption. This step

is referred to as the online phase.

Of course, if the actual tasks are substantially different

from the workload, SmartCrowd has to halt and re-

design the indexes from scratch. The latter scenario is

orthogonal to us.

Taking into account the above, in the next sections

we proceed as follows. First we propose an optimal (i.e.,

exact) solution in section 4. Next, in section 5, we pro-

pose two approximate algorithms, each of which uses a

greedy C-dex building and maintenance strategy and

admits a provable approximation factor under certain

conditions. Then, in section 6 we propose an alterna-

tive index building and maintenance algorithm, namely

C-dex+, which is based on clustering.

4 Optimal Algorithm

We describe the optimal (i.e., exact) C-dex building

solution in Section 4.1 and we discuss it maintenance

in Section 4.2.

4.1 C-DEX-Optimal Design (offline phase)

Recall Theorem 1 and note that the C-dex Design
Problem is proved to be NP-hard. SmartCrowd

proposes an integer linear programming (ILP)-based

solution that solves the optimization problem de-

fined in Equation 1 optimally satisfying the con-

straints. Our implementation uses the primal-dual bar-

rier method [45] to solve the ILP.

While the optimization problem is a linear combi-

nation of weights and skills, unfortunately, the decision

variables (i.e., ut’s) are required to be integers. More

specifically, C-dex sets are created by generating a to-

tal of n×|T | boolean decision variables, and the solution

of this optimization problem assigns a 1/0 value to each

variable, denoting that a worker is assigned to a par-

ticular task, or not. These integrality constraints make

the above formulation an Integer Linear Programming

(ILP) problem [15]. A solution to the ILP problem per-

forms an assignment of a worker to a task in T . Once the

optimization problem is solved, an index it is designed

for each task in the workload and 〈Pti ,Lti〉 is calculated.

Algorithm 1 summarizes the pseudocode.

Algorithm 1 Optimal C-dex Design Algorithm

Input: Workload T
1: Solve the C-dex Design ILP to get an assignment of the
ut ∈ {0, 1}, where u is a worker, and t ∈ T .

2: using ut, for each t ∈ T , compute and output it =
〈Pti ,Lti〉

3: return Index set I

Given Example 1, when C1 = C2 = 0.5, the best

allocation gives rise to V = 1.94, with the following

worker to task allocation: u1 = {t1}, u2 = {t1, t2}, u3 =

{t3}, u4 = {t2, t3}, u5 = {t2, t3}, u6 = {t1, t3}. This cre-

ates the following 3 indexes:

it1 = (〈0.6, 0.74, 0.58〉, {u1, u2, u6}),
it2 = (〈0.55, 0.75, 0.71〉, {u2, u4, u5}),
and it3 = (〈0.79, 1.15, 1.13〉 {u3, u4, u5, u6}).

Unfortunately, ILP is also NP-Complete [13]. The

commercial implementations of ILP use techniques such

as Branch and Bound [15] with the objective to speed

up the computations. Yet, computation time is mostly

non-linear to the number of associated variables and

could become exponential in the worst case.

4.2 C-DEX-Optimal Maintenance (online phase)

We design index maintenance algorithms, which gen-

erate optimal solutions under the non-preemption con-

straint (constraint no.3, Section 2.2). Non-preemption

of workers enforces that the existing assignment of an

available worker can not be disrupted, only new assign-

ments can be made if the worker is not maxed-out. Un-

der this assumption, all four incremental maintenance

strategies described below are optimal.

4.2.1 Replacing Workers

To dynamically find a replacement for unavailable

workers, without disrupting already made assignments,

we formulate a marginal ILP and solve the problem op-

timally only with the available set of workers.

We illustrate the scenario with an example. Suppose

that after the most appropriate index it is selected for

task t = 〈Qt1 , Qt2 , . . . , Qtm ,Wt〉 using Equation 1, a

subset of workers in Lti is unavailable or declines to

work on t. Imagine that the quality of it declines to

q′tj from qtj , for skill j, ∀j ∈ [1,m], and the cost de-

clines to w′t from wt, since some workers do not accept

the task. Consequently, the value of it also declines,

let us say, to v′t from vt. From the worker pool U , let

us imagine that a subset of workers U ′ are available

and their current assignment has not maxed out (i.e.,

Cu′ < Xh). To find the replacement of the unavailable

workers, SmartCrowd works as follows: It formulates

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 9

a marginal ILP problem with the same optimization ob-

jective for t, only with the workers in U ′. More formally,

the task is formulated as:

Maximize v′′t = v′t+C1×
∑

∀1≤j≤m

q′′tj +C2×(1− w
′′
t

Wt
) (2)

q′′tj = q′tj +Σu′∈U ′u
′
j × pu′ × usj

w′′t = w′t +Σu′∈U ′u
′
t × pu′ × wu′ , u′t ∈ {0, 1}.

Lemma 1 The marginal ILP in Equation 2 involves

only |U ′| variables.

The above optimization problem is formulated only

for a task t and considering only |U ′| � |U| workers.

It is incremental in nature, as it “builds” on the cur-

rent solution (notice that it uses the declined cost, skills,

and value in the formulation), involving a much smaller

number of variables and leading to small latency. More-

over, this strategy is fully aligned with the optimization

objective that SmartCrowd proposes. After this for-

mulation is solved, Lti is updated with the new workers

for which the above formulation has produced u′t = 1.

4.2.2 Adding New Workers

Assume that a set A of new workers has subscribed to

the platform. The task for SmartCrowd is to decide

whether (or not) to assign those workers to any task

in T , and if yes, what should be the assignment. Note

that SmartCrowd already has assigned the existing

worker set U to the tasks in T and they can not be

preempted.

The overall idea is to solve optimally a marginal ILP

only with the new workers in A and tasks T , without

making any modifications to the existing assignments

of the U workers to the T tasks. Formally, the problem

is formulated as follows:

Maximize Σt∈T v
′
t (3)

v′t = vt + C1 ×
∑

∀1≤j≤m

q′ti + C2 × (1− w′t
Wt

)

q′tj = {qtj +Σu∈Aut × pu × usj}

w′t = {wt +Σu∈Aut × pu × wu}
ut ∈ {0, 1}, 0 ≤ Σt∈T {ut ∈ A} ≤ Xh.

Lemma 2 The optimization problem in Equation 3 in-

volves only |A| × |T | variables.

4.2.3 Deleting Workers

In principle, the treatment of worker deletion is anal-

ogous to that of worker replacement strategies in Sec-

tion 4.2.1. Basically, the idea is to determine the de-

creased quality, cost, and value of each of the tasks that

are impacted by the deletion, and then re-formulate

an optimization problem only with those tasks, and

the remaining workers who are not maxed-out yet (i.e.,

Cu < Xh) on their assignment, using the current qual-

ity, cost, and value. Similar to Section 4.2.1, this for-

mulation is also a marginal ILP that is incremental in

nature, and involves a smaller number of variables. We

omit further discussion on this for brevity.

4.2.4 Updating Worker Profiles

Interestingly, the handling of worker profile updates is

also incremental in SmartCrowd. If the skill, wage, or

acceptance-ratio of a subset A′ of workers gets updated,

SmartCrowd first updates the respective value of the

tasks (where these workers were assigned), by discount-

ing the contribution of the workers in A′. After that,

a smaller optimization problem is formulated involving

only A′ workers and T tasks. After discounting the con-

tribution of the workers in A′, if the latest value of a

task t is v′t
6, current quality on skill j is q′tj , and current

cost is w′t, then the optimization problem is formulated

as follows:

Maximize Σt∈T {v′t} (4)

where,

v′′t = v′t + C1 ×
∑

∀1≤j≤m

q′′tj + C2 × (1− w′′t
Wt

),

q′′tj = {q′tj +Σu∈A′ut × pu × usj}

w′′t = {w′t +Σu∈A′ut × pu × wu}
ut = {0, 1}, Xl ≤ Σt∈T {ut ∈ A′} ≤ Xh

Similar to the previous cases, the proposed solution

is principled and well-aligned with the optimization ob-

jective that SmartCrowd proposes. The solution in-

volves only |A′| × |T | variables, and our experimental

results corroborate that it generates the output within

reasonable latency.

5 Greedy Approximation Algorithms

The optimal algorithm presented in Section 4 may be

very expensive regarding index building and mainte-

6 If none of the workers in A′ contributed to t, then v′t = vt.

10 Senjuti Basu Roy et al.

nance time, since the ILP-based solution has an expo-

nential computation time in the worst case. To expe-

dite these steps, in this section we propose two approx-

imate solutions, one randomized and one deterministic,

which are both guaranteed to run in polynomial time

and they have provable approximation factors under

certain conditions. The randomized algorithm admits

a better approximation factor than the deterministic

one, when the objective function is only submodular.

The deterministic algorithm requires both submodular-

ity and monotonicity to admit the provable approxima-

tion factor, but it is computationally more efficient than

its randomized counterpart. The randomized algorithm

is presented in sub-section 5.1 and the deterministic in

sub-section 5.2.

5.1 Greedy C-DEX Randomized algorithm

5.1.1 C-DEX Randomized index building (Offline

phase)

Offline-CDEX-Randomized: This randomized approxi-

mation algorithm is an adaptation of the solutions pro-

posed in [11]. [11] proposes its randomized algorithm

for a single set (analogous to a single task in our case),

whereas here we need to perform the assignment for a

set of tasks.

The intuitive idea behind the algorithm described

in [11] is to perform an “adaptive local search”. It pro-

ceeds by locally optimizing a smoothed variant of the

optimization function f(S), obtained by biased sam-

pling depending on S. The approach of locally optimiz-

ing a modified function has been referred to as “non-

oblivious local search” [1] in the literature. For smooth-

ing, the aforementioned work [11] uses a multi-linear re-

laxation [46] of the objective function. In particular, the

algorithm in [11] starts with an empty set. For each ele-

ment x, it computes the marginal gain of adding the el-

ement by computing multiple possible random sets with

and without x. These steps are referred to as “smooth-

ing”. Then the element that has a marginal gain greater

than a threshold value is added to the set. Similarly,

if any element in the current solution has a marginal

value less than a threshold it is dropped. This process

is repeated until the objective function reaches a local

optimum. In this randomized local search, the elements

are sampled randomly with different probabilities. In

other words, given a current solution S, the idea is to

do a biased sampling based on whether an element is

present in the set.

This algorithm [11] is adapted to our problem. It is

easy to see that the items in [11] correspond to work-

ers. Algorithm 2 contains the pseudo-code. Given the

Algorithm 2 Offline-CDEX-Randomized

Input: Workload T = {t1, t2, . . . , tl}, U = {u1, u2, . . . , un},
Xh

1: Fix parameters, δ, δ
′ ∈ [−1, 1]. Start with A = {A1 =

{}, A2 = {}, . . . Al = {}}, no of elements X = n×Xh.
2: Call Offline-CDex-ApproxDeterministic to get an esti-

mate of value for optimal worker to task assignment, i.e.,
OPT.

3: For each element u and set At, define wAt,δ(u) =
E[f(R(At, δ) ∪ {u})]− E[f(R(At, δ)\{u})].
By repeated sampling, compute w̄At,δ(u), an estimate of
wAt,δ(u) within a factor ± 1

(n×Xh)2
of OPT.

4: If there exists an u ∈ X\At such that w̄At,δ(u) >
2

(n×Xh)2
OPT , include u in At and go to step 3.

5: If there exists an u ∈ X\At such that w̄At,δ(u) <
− 2

(n×Xh)2
OPT , exclude u from At and go to step 3.

6: Return a random set R(At, δ′).
7: return the index set I = {A1, A2, . . . , Al}.

pool of tasks and workers, the workers are sampled ran-

domly with different probabilities. We start with a set

of null sets, i.e., A = {A1 = {}, A2 = {}, . . . Al = {}},
where the number of sets equals the number of tasks.

δ, δ
′

are two fixed parameters ∈ [−1, 1]. Theorem 3.6

in [11] suggests that we set δ as 1/3 and δ′ is chosen

randomly to be 1/3 with probability 0.9 and −1 with

probability 0.1. We have adhered to this suggestion in

our implementation. R(At, δ) denotes a random set of

workers for a task t, where the workers in A are sam-

pled with probability p = 1+δ
2 and workers outside A

are sampled with probability q = 1−δ
2 .

For each worker u, in an iteration, the weight of u

is computed as wA,δ,t(u), which is the marginal gain

of adding u to the random set R(At, δ) in an expected

sense (Step 3 of Algorithm 2). In other words, we con-

struct a random set and see the marginal utility of

adding this worker. We repeat this process numerous

times to get an estimate of the worker’s real weight,

w̄At,δ(u). After that, worker u is either included in At or

excluded from At based on a certain probability check

(Step 4 and 5 of Algorithm 2). Finally, a random set

R(At, δ
′) is returned for a given δ′, representing the

assignment of a set of workers to task t (Step 6 of Al-

gorithm 2).

In order to decide whether to add a worker

to the solution, the algorithm uses a probabilistic

check that requires an estimate of the optimal so-

lution. We use the same technique as [11] and use

a deterministic local search algorithm (referred to as

Offline-CDex-ApproxDeterministic as a subroutine

for this purpose (Step 2 of Algorithm 2). Further, since

a worker is allowed to be assigned to at most Xh tasks,

a total number of Xh × n elements (each element is a

worker) are created.

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 11

Algorithm 3 Offline-CDex-ApproxDeterministic

Input: Workload T = {t1, t2, . . . , tl}, U = {u1, u2, . . . , un},
A = {A1 = {}, A2 = {}, . . . Al = {}}, Xh, X = n×Xh

1: For each At, choose a single distinct worker u from X
who maximizes f({u}) and remove u from X

2: If there exists an element u′ ∈ X\At, such that f(At ∪
{u′}) > (1 + ε

n2)f(At) , then At = At ∪ {u′}. Go back
to step 1.

3: If there exists an element u′ ∈ At, such that f(At\u′) >
(1 + ε

n2)f(At), then At = At\u′. Go back to step 1.
4: ∀t ∈ T , vt = maximum of f(At) and f(X\At)
5: return V =

∑
t∈T vt as an estimate of OPT.

The subroutine Offline-CDex-ApproxDeterministic

is called inside Offline-CDEX-Randomized to estimate

the V, i.e. OPT. This algorithm also runs in a greedy

fashion, to increase the value V of our solution; in

each iteration, it either includes a new element u in

At or discards it from At. Whether an element would

be added or discarded is based on the check that is

described in Step-4 of Subroutine 3. This algorithm

has an approximation factor of 1/3, which could be

proved by directly using the results of [11].

Theorem 5 Offline-CDEX-Randomized has an ap-

proximation factor of 2/5, when Qtj = 0,∀j ∈ {1..m}.

Proof Sketch: Section 3.1.1 proves that V becomes sub-

modular under the above-mentioned conditions. Af-

ter that, the approximation factor follows directly

from [11].

Lemma 3 The run time of algorithm

Offline-CDEX-Randomized is polynomial, i.e.

O((Xh× |U|)2
δ × |T |).

Proof Based on the previous result [11], the number of

iterations per task is atmost O((Xh× |U|)2
δ); after that,

our result trivially follows.

5.1.2 C-DEX Randomized index maintenance (Online

phase)

Akin to the offline scenario, we propose a

randomized greedy approximation algorithm

Online-CDEX-Randomized that is incremental and

designed to ensure worker non-preemption.

Replacing Workers: After a task arrives if one or more

of the assigned workers to this task are not available,

an efficient greedy solution is proposed by selecting re-

placement workers from the available pool. This strat-

egy leads to a provable approximation factor of 2/5,

when Qtj = 0,∀j ∈ {1..m}. Online-CDEX-Randomized
works akin to Offline-CDEX-Randomized, except that

it needs to find replacement workers for a single task t.

Given a set of unavailable workers in Lti, SmartCrowd

considers the available set of workers U ′, and repeats

Algorithm 2 considering only those workers for t and

their available bandwidth. The rest of the algorithm is

akin to the one described earlier.

Theorem 6 Online-CDEX-Randomized admits an ap-

proximation factor of 2/5, when Qtj = 0,∀j ∈ {1..m}.

Proof Sketch: Our proof uses the submodularity prop-

erty of vt as proved in Section 3.1.1 under these condi-

tions.

Of course, unless the above conditions are satisfied, the

above approximation factor does not theoretically hold.

Lemma 4 The run time of Online-CDEX-Randomized

is polynomial, i.e., O((Xh× |U|)2
δ).

Addition of New Workers: Our proposed randomized

algorithm can be used to assign new workers to the

tasks. This is similar in principle to the offline greedy

randomized approximation algorithm described above.

New workers must be assigned to the pre-computed in-

dexes using Algorithm 2 (randomized solution) without

disrupting the existing allocation of the current work-

ers. However, in order to satisfy any theoretical guar-

antee, the objective function has to relax the quality

threshold constraint (to satisfy submodularity). The

run time complexity of the algorithm remains unal-

tered.

Deletion of Workers: The randomized approximation

algorithm is adapted to handle worker deletions, akin

to the greedy worker replacement strategy described

above. It admits the exact same set of theoretical claims

under similar conditions as described above.

Updates of Worker Profile: If the skill, wage, or ac-

ceptance ratio of a subset A′ of workers gets updated,

SmartCrowd first updates the respective value of

the tasks (where these workers were assigned), by dis-

counting the contribution of the workers in A′. Af-

ter that, the greedy randomized approximation algo-

rithm Offline-CDEX-Randomized is adapted involv-

ing A′ workers and T tasks. It iteratively adds a

worker in A′ to a task in T based on sampling as

described in Algorithm 2, while satisfying the skill,

cost, and number of workers per task constraint. Akin

to Offline-CDEX-Randomized, this algorithm does not

satisfy the 2/5 approximation factor unless Qtj =

0,∀j ∈ {1..m}.

12 Senjuti Basu Roy et al.

5.2 Greedy C-DEX Deterministic algorithm

5.2.1 C-DEX Deterministic index building (Offline

phase)

Next we describe the second approximation algorithm

Offline-CDEX-Deterministic, which has a provable

approximation factor when the function is submodular

and monotonic and is more computationally efficient

compared to its randomized counterpart.

Given the pool of tasks and workers, the algorithm

iteratively adds a worker to a task such that the ad-

dition ensures the highest marginal gain in V in that

iteration, while ensuring the quality, cost, and tasks-

per-worker constraints. Imagine a particular instance of

Offline-CDEX-Deterministic on Example 1 after the

first iteration. After a single worker assignment (first

iteration will assign one worker to one of the indexes),

if only u1 is assigned to it1 and nobody to it2 and it3

yet, then the algorithm may select u6 to assign to it3

in the second iteration to ensure the highest marginal

gain in V.

Theorem 7 Offline-CDEX-Deterministic has an

approximation factor of (1 − 1/e), when Qtj = 0,∀j ∈
{1..m} and C2 = 0.

Proof Sketch: The proof directly uses the results of Sec-

tion 3.1.2 (Theorem 4) and on the fact that the opti-

mization function V becomes submodular and mono-

tonic under the above-mentioned conditions. After that,

the approximation factor follows directly from [38].

Lemma 5 The run time of algorithm

Offline-CDEX-Deterministic is polynomial, i.e.,

O(Xh × |U| × |T |).

It is evident that Offline-CDEX-Deterministic

is more efficient than its randomized counterpart

Offline-CDEX-Randomized(referred to lemma 3).

5.2.2 C-DEX Deterministic index maintenance (online

phase)

Replacing Workers: The worker replacement strat-

egy in this case is a deterministic greedy algorithm

Online-CDEX-Deterministic that leads to a provable

approximation factor when Qtj = 0,∀j ∈ {1..m} C2 =

0. We describe its functionality next.

Online-CDEX-Deterministic: Given a set of un-

available workers in Lti, SmartCrowd performs a sim-

ple iterative greedy replacement from the available pool

of workers U ′. In a given iteration, the idea is to select

the worker from the available pool, whose addition will

give the highest marginal gain in vt, and add her to

Lti. This iterative process continues until the cost con-

straint exceeds. This greedy algorithm is approximate

in nature but admits a provable approximation factor

under certain conditions.

Theorem 8 Online-CDEX-Deterministic admits an

approximation factor of 1 − 1/e, when Qtj = 0,∀j ∈
{1..m} and C2 = 0.

Proof Sketch: Our proof uses the monotonicity and sub-

modularity property of vt as proved in Section 3.1.1

under these conditions.

Of course, unless the above conditions are satisfied, the

above approximation factor does not theoretically hold.

Lemma 6 The run time of

Online-CDEX-Deterministic is polynomial, i.e.,

O(|U ′|).

Addition of New Workers: Again the proposed deter-

ministic algorithm is used to assign new workers to

the tasks similarly to the offline greedy deterministic

approximation algorithm described above. New work-

ers are assigned to the pre-computed indexes using

the highest marginal gain of the deterministic solution

without disrupting the existing allocation of the current

workers. In order to satisfy any theoretical guarantee,

the objective function has to satisfy both submodular-

ity and monotonicity. The run time complexity of the

algorithms remains unaltered.

Deletion of Workers: A deterministic approximation

algorithm is proposed to handle worker deletions, sim-

ilarly to the greedy worker replacement strategy de-

scribed above. It admits the exact same set of theoret-

ical claims under similar conditions.

Updates of Worker Profile: If the skill, wage or ac-

ceptance ratio of a subset A′ of workers gets up-

dated, SmartCrowd first updates the respective value

of the tasks (where these workers were assigned) by

discounting the contribution of the workers in A′.
After that the greedy solution is proposed as fol-

lows. A deterministic approximation algorithm is con-

structed that adapts Offline-CDEX-Deterministic

involving A′ workers and T task. It iteratively adds

a worker in A′ to a task in T based on the high-

est marginal gain in value, while satisfying the skill,

cost and number of workers per task constraint. Akin

to Offline-CDEX-Deterministic, this algorithm does

not satisfy the (1 − 1/e) approximation factor unless

Qtj = 0,∀j ∈ {1..m} and C2 = 0.

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 13

6 Clustering-based approximation algorithm:

C-DEX+

In this section we present a different approximate so-

lution, which is called C-dex+ and it is based on an

alternative index building idea. In C-dex+, the ac-

tual worker pool is intelligently replaced by a set of

Virtual Workers, which are much smaller in count.

SmartCrowd uses the Virtual Workers and the same

workload to pre-compute a set of indexes, referred to as

C-dex+. The C-dex+ approach enables efficient pre-

computation, as well as faster assignments from work-

ers to tasks. C-dex+ is an approximate solution, and

the quality of its approximation is hinged on how the

Virtual Workers are created.

Intuitively, a Virtual Worker represents a set of “in-

distinguishable” actual workers, who are similar in skills

and cost. For the simplicity of exposition, if we assume

that in a given worker pool, there are 3 workers who

posses exactly the same skill s and cost w, then a sin-

gle Virtual Worker V could be created replacing those

3 with skill s and cost w. Obviously, when there are

variations in skills and costs of workers, the profile of

V needs to be defined conservatively - by taking the

maximum cost of the individual workers as V ’s cost,

and the minimum of the individual worker’s expertise

per skill, as V ’s skill. The formal definition of V is:

Definition 2 Virtual Worker V : V represents a set n′

of actual workers that are “indistinguishable”. V is an

m + 2 dimensional vector, 〈Vs′1 , Vs′2 , . . . , Vs′m , Vw′ , |n
′|〉

describing expected skill, expected wage, number of

actual workers in V , where, Vs′i = minu∈n′ pu × usi ,

Vw′ = maxu∈n′ pu × wu.

Consider Example 1 again, if u2 and u5 are grouped

together to form a Virtual Worker V , then V =

〈0.21, 0.18, 2〉.
It is apparent that the Virtual Workers help reduce

the size of the optimization problem. The formal defi-

nition of C-dex+ is:

Definition 3 (C-dex+) A C-dex+ itV = (PtVi ,LtVi)

is a pair that represents an assignment of a set of Vir-

tual Workers in N to a task t. PtVi ,LtVi are similar to

Pti ,Lti, defined using the Virtual Worker set N .

6.1 C-DEX+ Design (offline phase)

We work in two steps: 1) Creating the Virtual Workers

and 2) Designing the C-dex+.

Creating Virtual Workers: First, a set N of Virtual

Workers is created, given U . Intuitively, a Virtual

Worker V should represent a set of workers who are sim-

ilar in their profile. In SmartCrowd, Virtual Workers

are created by performing multi-dimensional cluster-

ing [17] on U , and considering a threshold α that dic-

tates the maximum distance between any worker-pairs

inside the same cluster. The size of the Virtual Worker

set N clearly depends on α, with a large value of α

leading to smaller |N |, and vice versa. Interestingly,

this allows flexible design, as the appropriate trade-off

between the quality and the run-time complexity could

be chosen by the system, as needed. Formally, given U
and α, the task is to design a set of Virtual Workers,

such that the following condition is satisfied:

∀u, u′ : u ∈ V, u′ ∈ V,Dist(u, u′) ≤ α

Our implementation uses a variant of Connectivity

based Clustering [17] considering Euclidean distance to

that end.

For example, if α = 0.25, Example 1 will cre-

ate |N | = 2 Virtual Workers; V1 with {u1, u2, u3, u5}
and V2 with{u4, u6}; V1 = 〈0.08, 0.18, 4〉 and V2 =

〈0.3, 0.36, 2〉.

Designing C-DEX+: For a Virtual Worker V with |n′|
actual workers, a counter CV is created stating the max-

imum assignments of V , i.e., CV = |n′| ×Xh. An ILP is

designed analogous to Section 4 with |N | workers and

all the tasks in T . Additionally, a total of 2|N | con-

straints are added; one per V , stating that the max-

imum and the minimum allocation of V are CV and

(|n′| ×Xl), respectively.

Lemma 7 The optimization problem for C-DEX+ in-

volves only |N | × |T | variables.

Using the above lemma, it is easy to see that the ILP

is likely to get solved faster for C-dex+, as it involves

a smaller number of variables.

Example 1 gives 2 virtual workers V1, V2 when α =

0.25. Two additional maximum allocation constraints

will be added to the optimization problem, such that

CV1
= 4, CV2

= 2. Therefore, the index-design problem

with Virtual Workers could be solved for 3 tasks and 2

Virtual Workers, involving only 3×2 = 6 decision vari-

ables, instead of 6 × 3 = 18 variables that C-dex has

to deal with. While this solution is much more efficient

compared to C-dex, it may give rise to an approxi-

mation of the achieved quality (i.e. the value of the

objective function V), because the search space for the

optimization problem gets further restricted with the

Virtual Workers, leading to sub-optimal solution for V.

14 Senjuti Basu Roy et al.

Algorithm 4 C-dex+Design Algorithm

Input: Workload T , U , α
1: Create N , using U and α.
2: Solve the C-dex+ Design ILP problem to get an assign-

ment of Virtual Workers to the tasks.
3: return Index set IV .

Interestingly, our empirical results shows that this al-

ternative solution is efficient and that the decline in the

overall quality is negligible.

The output of the C-dex+ Design Algorithm is the

set of task indexes IV using virtual workers. Consider-

ing Example 1, IV = {itV1 , itV2 , itV3 }. For task t1, the

algorithm created

itV1 = (〈0.38, 0.76, 1.08〉, {V1, V1, V2, V2}), when C1 =

C2 = 0.5. The individual worker-to-task assignment can

be performed after that by a simple post-processing.

6.2 C-DEX+ Maintenance (online phase)

Recall that the maintenance strategies are designed

for 4 different scenarios, enforcing the worker non-

preemption constraint.

Replacing Workers: C-dex+ designs a marginal ILP,

involving task t and all the Virtual Workers whose cur-

rent CV > 0, akin to its C-dex counterpart. Once

the solution is achieved, individual worker assignments

can be performed with a post-processing algorithm, in

a round robin fashion, by keeping track of individual

LV ’s.

Addition of New Workers: First, the existing Virtual

Worker set N needs to get updated. Since α is pre-

determined, the new workers can be accommodated

with incremental clustering, just by forming new clus-

ters (i.e., creating new Virtual Workers) involving those

additions, without having to re-create the entireN from

scratch. After that, a smaller ILP is formulated, involv-

ing only the Virtual Workers that are affected by the

updates and considering existing partial assignments,

akin to Equation 3. We omit the details for brevity.

Deletion of Workers: The handling of worker deletion

is akin to addition, in the sense that SmartCrowd

propagates these updates incrementally to the Virtual

Worker set N . To satisfy the pre-defined α, it accounts

for the remaining actual workers of each Virtual Worker

V that has at least one worker deletion. It reruns a

smaller clustering solution involving only those remain-

ing workers. As soon as N gets updated, the rest of the

maintenance is exactly the same with what is discussed

in Section 4.2 regarding deletion handling. We omit the

details for brevity.

Updates of Worker Profile: Similarly, if SmartCrowd

gets to have an updated profile of some of the workers,

it first updates the Virtual Workers set by solving a

smaller clustering problem, akin to deletion. With the

updated Virtual Workers set, the rest of the mainte-

nance is the same as solving a marginal ILP involving

only the updated Virtual Workers, similarly to the pro-

file update maintenance discussed in Section 4.2.

7 Experimental Evaluation

We perform two different types of experiments. Real-

data experiments are conducted involving 250 AMT7

workers in three different stages. Synthetic-data exper-

iments are conducted using an event-based crowd sim-

ulator.

7.1 Real-Data Experiments

The purpose of these experiments is to evaluate our ap-

proach in terms of feasibility and quality. We study fea-

sibility since the current paid crowdsourcing platforms

(like AMT) do not support KI-C task development and

thus this is one of the first studies trying to optimize

KI-C in such an environment. We study quality with the

aim to measure the key qualitative axes of the knowl-

edge produced by the hired workers.

Overall the study is designed as an application

of collaborative news document writing. Specifically,

workers hired through AMT are asked to produce doc-

uments on 5 diverse topics (KI-C tasks) of current in-

terest: 1) Political unrest in Egypt, 2) NSA document

leakage, 3) Playstation (PS) games, 4) All electric cars

and 5) Global Warming. For simplicity and ease of

quantification, we consider that each task requires one

skill (i.e. expertise on that topic). To perform the as-

signment of workers to tasks, we compare three strate-

gies. The first one is the C-dex-Optimal, proposed by

SmartCrowd and presented in section 4. The sec-

ond, namely Benchmark, is a rival strategy according

to which the workers self-appoint themselves to articles

after a skill-based pre-selection process, akin to how

current paid platforms work. The third rival strategy,

called Online-Greedy, assigns works to available tasks

taking into account the workers’ marginal utility - i.e.

how much the worker’s assignment improves the ob-

jective function of the task as defined in Equation 1 -

7 Amazon Mechanical Turk, www.mturk.com

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 15

on each task; this is the adaptation of one of the lat-

est state-of-the-art algorithms for online crowdsourcing

task assignment [18].

The user study is conducted in 3 stages: i) worker

profiling, ii) worker-to-task assignment and iii) task

evaluation, as Figure 1 shows.

Fig. 1: Stages of the User Study

7.1.1 Stage 1 - Worker Profiling

In this stage, we hire 20 AMT workers per task (news

topic), totaling 100 unique workers. The workers are

informed that a subset of them will be invited (through

email) in Stage 2 to collaboratively write a document

on that topic.

Learning Workers Skills: We design pre-

qualification tests to learn the skill of the workers. We

design a questionnaire that comprises of 8 multiple

choice questions per task, for which the ground truth

is known. These questions are designed to assessing the

workers’ knowledge over facts related to the task. For

example, for “Political Unrest in Egypt”, we design

questions, such as, “What is the name of the place in

Cairo where the protests took place?” with possible

answers: Tahrir Square, Mubarak Plaza, Al Azhar

Square, or for the NSA leakage topic: “Who is Adrian

Lemo? with possible answers: A computer hacker, A

federal agent, Both). The skill of a worker is then

calculated as the percentage of her correct answers.

Learning Wage and Acceptance Ratio: In the

absence of historical data, we ask explicit question to

learn the wage and acceptance ratio of the workers. For

example, we ask each worker the following questions,

Question to learn wage: “If you are asked to write a

document on topic [X] within 150 words, how much

would you typically charge?”

Question to learn acceptance ratio: “Out of 10 docu-

ment editing tasks such as ours, how many will you

typically accept?”

Figure 2 shows the quantification of worker profile dis-

tributions for the “Egypt” task. Worker profiles for the

other topics exhibit similar distributions and are omit-

ted for brevity. A strong positive correlation between

the workers’ skill and requested wage is also observed.

7.1.2 Stage 2 - Worker-to-Task Assignment

The set of 100 workers form our worker pool and

we evaluate different task assignment strategies by

comparing how these 100 workers are assigned to

tasks. Specifically, in this stage, a subset (56 out of

the 100) of the workers is selected and appointed to

the tasks according to 3 worker-to-task assignment

strategies: C-DEX (that corresponds to SmartCrowd),

Benchmark and Online-Greedy, as presented above.

Notice that the initially hired 100 workers comprise

our original worker pool. Naturally, different task as-

signment algorithms only select a subset from there for

each task.

For Benchmark, we filter out workers with smaller

than 0.5 skill (based on the pre-qualification test) and

the rest of the workers self-appoint themselves to the

task. For both Benchmark and Online-Greedy, any

worker to task allocation that exceeds the maximum

wage budget is also disregarded.

The minimum skill requirement per task is consid-

ered to be 1.8, the maximum wage $2.0 and C1 = C2 =

0.5. The selected workers for each task are provided

with a Google doc to collaboratively compose an arti-

cle on the task’s topic up to 150 words and in a time

window of 24 hours. The workers are suggested to use

the answers of the Stage-1 questionnaires, as a refer-

ence and/or starting point of their work. The workers

are also asked to care for quality aspects of their article,

such as language correctness and information complete-

ness. The final outcome of this stage is a production of

3 documents per task (one document per assignment

strategy), giving a total of 15 documents.
7.1.3 Stage 3 - Task Evaluation

KI-C evaluation is a delicate topic because it is subjec-

tive. An appropriate technique for such an evaluation

is to leverage the wisdom of the crowds. This way a

diverse and large enough group of individuals can ac-

curately evaluate information to nullify individual bi-

ases and the herding effect. Therefore, in this stage we

crowdsource the task evaluation. Each completed task

(set of 3 documents) from Stage 2 is set up as a HIT

in AMT, and 30 workers are assigned to evaluate it

considering 5 key quality assessment aspects [6], with-

out knowing the underlying task production algorithm.

This is akin to obtaining the viewpoint of the average

reader.

The results listed in Figure 3 indicate that the

use of C-dex indeed leads to more qualitative KI-C

16 Senjuti Basu Roy et al.

0 0.25 0.375 0.5 0.625 0.75 1
0

5

10

15

20

25

30

skill

%
 o

f W
or

ke
rs

(a) Skill distribution

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Acceptance Ratio
%

 o
f W

or
ke

rs

(b) Acceptance ratio distri-
bution

[10−20] [20−40] [40−60] [60−90]
0

5

10

15

20

25

30

35

40

Worker’s wage in cents

%
 o

f W
or

ke
rs

(c) Wage distribution

0 [10−20] [20−40] [40−60] [60−90]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Worker’s wage in cents

Av
er

ag
e

sk
ill

of
 th

e
w

or
ke

rs

(d) Strong positive correla-
tion between worker skill and
wage

Fig. 2: AMT worker profile distributions for the Egypt task

tasks, across all of the measured quality axes. Dur-

ing post-analyses of the results, we have observed that

the documents produced by C-dex have higher partic-

ipation and edits from the participants, compared to

the other two strategies. Indeed, both Benchmark and

Online-Greedy take a myopic view to allocate workers

to tasks and the allocation of workers to a task must

stop as soon as the budget exceeds. Therefore, we ob-

serve that both of these strategies allocate lesser num-

ber of workers per task, which result in lesser edits, and

lower overall quality consequently. These observations

also implicitly corroborate the effectiveness of our ad-

ditive skill model, where, workers indeed build on each

others’ contribution and improve the overall quality. In-

terestingly, we also observe that almost 90% of the time

workers with high acceptance ratio indeed accept the

tasks during Stage-2.

7.2 Synthetic Data Experiments

These experiments are conducted on an Intel core i7

CPU, 8 GB RAM machine. IBM CPLEX version 12.5.1

is used for solving the ILP. An event-based simulator

is designed on Java Netbeans to simulate the crowd-

sourcing environment. All results are presented as the

average of 3 runs.

Simulator Parametrization: The parameters presented

below are chosen akin to their respective distributions,

observed in our real AMT populations.

1. Simulation Period - We simulate the system for a

time period of 10 days, i.e. 14400 simulation units, with

each simulation unit corresponding to 1 minute.

2. # of skills - a total of |S|= 10 skills are simulated.

Unless otherwise stated, the default # of skills in a task

is 1.

3. # of Workers - |U|= 10,000.

4. Profile of a worker - usi in skill si receives a ran-

dom value from a normal distribution with the mean

set to 0.5 and a variance 0.15. wu receives a random

value from a normal distribution with a mean set to

0.5, variance 0.2. pu is also normal with a mean set to

0.5, variance 0.1.

5. Tasks - A normal variable with mean 15, variance 3 is

multiplied with another normal random variable with

mean 0.7, variance 0.15 to get Qti . The former normal

random variable is multiplied with a different normal

random variable with mean 0.5, variance 0.2 to get Wt.

6. Weights - Unless otherwise stated, C1 = C2 = 0.5.

7. Worker Arrival, Task Arrival - Workers arrive fol-

lowing a Poisson process, with an arrival rate of µ =

10/minute. Tasks arrive also based on a Poisson process

with arrival rate κ = 20/minute.

8. Workload - Unless otherwise stated, the workload is

designed with 10, 000 tasks.

Implemented Algorithms: Benchmark: It models

a typical crowdsourcing environment, where workers

are self-appointed to tasks, trying to maximize their

individual profit. The algorithm also performs worker

pre-filtering, similar to the pre-qualification tests used

by today’s crowdourcing platforms, allowing workers

to undertake a certain task t only if their skill is above

10% of the task’s skill requirement Qti .

Online-Greedy: As soon as a worker arrives, it finds

from the available tasks the ones that pay more than

the worker’s minimum wage. Then it calculates the

worker’s marginal utility on the filtered tasks and

suggests to the worker the task with the highest

utility. This algorithm is an adaptation of one of

the latest state-of-the-art strategies for online task

assignment [18].

Online-Optimal: This approach assigns the incoming

tasks to the available workers so as to maximize the

objective function. In other words, as new tasks arrive,

this algorithm optimally solves the ILP problem of

Equation 1 (which in turn maximizes the objective

function). However, when invoked it only uses the

workers that are currently online. This algorithm acts

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 17

2

3

4

5
Completeness

Grammar

Neutrality

Clarity

Timeliness

Added value

Egypt Political Unrest

C-DEX Online-greedy Benchmark

2

3

4

5
Completeness

Grammar

Neutrality

Clarity

Timeliness

Added value

NSA Document Leakage

C-DEX Online-greedy Benchmark

2

3

4

5
Completeness

Grammar

Neutrality

Clarity

Timeliness

Added value

Global Warming

C-DEX Online-greedy Benchmark

0

2

4

6
Completeness

Grammar

Neutrality

Clarity

Timeliness

Added value

Playstation Games

C-DEX Online-greedy Benchmark

2

3

4

5
Completeness

Grammar

Neutrality

Clarity

Timeliness

Added value

All Electric Cars

C-DEX Online-greedy Benchmark

Fig. 3: Results of the real-user study on crowd journalism application tasks. The new articles written based on the

C-DEX assignment are consistently better in quality compared to the rival assignment methods.

as a natural contrast to our proposed SmartCrowd

algorithms (which all have an offline and an online

phase) in that it performs optimal decisions based on

the information available at that time.

C-DEX: generates the optimal solution for offline

computation and online maintenance presented in

Section 4.

Offline-CDEX-Approx, Online-CDEX-Approx:

generates the approximate greedy solution of

Section 5. We use the randomized variant

(Offline-CDEX-Randomized) for the majority of

the experiments as it had a better performance.

However, we have also included a comparison of perfor-

mance between the deterministic and the randomized

variants.

C-DEX+: generates the approximate clustering-based

solution of Section 6.

18 Senjuti Basu Roy et al.

0

10

20

30

40

50

60

70

80

90

0

20

40

60

80

100

120

5K 10K 20K 30K 40K 50K

N
o

rm
al

iz
ed

 O
b

je
ct

ve
 f

u
n

ct
io

n
 v

al
u

e

P
re

co
m

p
u

ta
ti

o
n

 T
im

e
(i

n
 m

in
u

te
s)

Workload Size |T|

C-Dex-Time

C-Dex+-Time

Offline-CDEX-Approx-
Time

C-DEX Quality

C-Dex+ Quality

Offline-CDex-Approx-
Quality

Fig. 4: Index Building Time and
Quality varying workload

0

10

20

30

40

50

60

70

80

90

2 4 6 8 10 15 20

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l T
as

ks

Simulation Time (in days)

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

Online-CDEX-
Approx-Rand

Fig. 5: Performance varying simula-
tion time

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 15 20

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l T
as

ks

Simulation Time (in days)

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

Online-CDEX-
Approx-Rand

Fig. 6: Performance varying simula-
tion time with no skill threshold and
C2 = 0, Xl = 0

Benchmark Online-
Greedy

Online-
Optimal

C-Dex C-Dex+ C-Dex
Approx-Rand

0

5

10

15

20

25

Av
g

En
d-

to
-E

nd
 S

im
ul

at
io

n
Ti

m
e

Fig. 7: Performance after entire sim-
ulation period

0

10

20

30

40

50

60

70

80

0.5 1 1.5 2

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l T
as

ks

Ratio of Worker to Task Arrival Rate

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

CDEX-Approx-Rand

Fig. 8: Performance varying the ratio
of task to worker arrival rate

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l T
as

ks

Number of Skills

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

CDEX-Approx-
Rand

Fig. 9: Performance varying # of
skills/task

7.2.1 Performance Experiments

We design experiments for both the offline phase (index

building) and the online phase (index maintenance).

Two measures are used: clock time for the index build-

ing and maintenance stages, and the fraction of suc-

cessful tasks for the worker-to-task assignment stage

(# of successful task assignments
#tasks).

Summary of Results: The algorithms pro-

posed in this paper C-DEX, C-DEX+ and

Offline-CDEX-Approx-Randomized require an ad-

ditional preprocessing step for building an index.

C-DEX is the most time-consuming as it performs

an optimal worker to task allocation. C-DEX+ and

Offline-CDEX-Approx-Randomized require signifi-

cantly less time as they only compute an approximate

index. Nevertheless, we observe that this pre-processing

cost is redeemed during the online phase, since our

index-based strategies require substantially less time

during runtime to perform the adaptive worker-to-task

assignments, compared to our rival algorithms. We also

observe a similar behavior during worker maintenance

where the index-based strategies perform significantly

better.

While Online-Optimal has a a performance (objec-

tive function value) comparable to C-DEX at the start

(such as Figure 14), it degrades as the simulation ran

longer. Making online decisions one task at a time (even

if optimally per task), may indeed lead to undesirable

outcome at the end. This is analogous to the classical

difference between the online vs offline algorithms. By

using the workload, C-DEX could be considered as an

offline algorithm for the task-assignment problem. The

results indicate that it is important to pro-actively do

task assignment, so as to distribute workers and to take

a holistic view of all tasks instead of optimizing one task

at a time.

Index Building (offline phase) Figure 4: We

vary the workload size of C-dex, C-dex+ and

Offline-CDEX-Approx-Randomized with |U| = 10, 000

and measure clock time for index computation (in

minutes). Recall that C-dex+ needs to have the

Virtual Worker set (N) computed first. For that, our

experimental evaluation sets α to 20-th percentile

pair-wise Euclidean distance in ascending order, and

observes that the computation time is within 2 minutes,

resulting in |N | = 620 Virtual Workers. The results are

presented in Figure 4 (consider the primary Y-axis).

Unsurprisingly, Offline-CDEX-Approx-Randomized is

the fastest among the three alternatives, but C-dex+

is very comparable. Beyond 50, 000 tasks, C-dex

requires exorbitant time.

Worker Replacement (online phase) We com-

pare the six implemented algorithms. The

index-based algorithms (C-dex,C-dex+ and

Online-CDEX-Approx-Randomized) clearly win

over the rest.

Simulation period - Figures 5, 6, 7: In Figures 5

and 6, we measure system performance (fraction of

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 19

0

10

20

30

40

50

60

70

80

90

0.2 0.3 0.4 0.5 0.75 1

Fr
ac

ti
on

 o
f S

uc
ce

ss
fu

l T
as

ks

Acceptance Probability

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

CDEX-Approx-Rand

Fig. 10: Performance varying accep-
tance ratio

0

10

20

30

40

50

60

70

80

90

0.2 0.3 0.4 0.5 0.75 1

Fr
ac

ti
on

 o
f S

uc
ce

ss
fu

l T
as

ks

Mean Expertise

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

CDEX-Approx-Rand

Fig. 11: Performance varying mean
skill

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 200 500 750 1000

M
ai

nt
en

an
ce

 T
im

e
(in

 m
in

ut
es

)

#Changes in worker pool

C-Dex

C-Dex+

CDEX-Approx-
Rand

Fig. 12: Time for index maintenance
varying # worker addition

successful tasks) throughout the simulation period

at discrete intervals (every 2 days). Figure 6 cap-

tures the special case with C2 = 0, Xl = 0 and

zero skill threshold. Note that, under this condition

Online-CDEX-Approx-Randomized has a provable ap-

proximation factor. We can observe that the proposed

index-based strategies outperform the remaining ones

significantly and that they maintain their throughput

over the entire simulation period, while the other algo-

rithms peak and then drop midway, as a result of their

myopic worker-to-task assignment decisions that penal-

ize the overall outcome. However, Figure 5 and 6 still

depict a better-than-reality performance for some algo-

rithms, since certain bad assignments are not counted

as such due to the measurement discretization. For ex-

ample, if a task comes at time unit 1, languishes until

time 2388 before getting assigned, it will still count as

a successful task. Figure 7 investigates this behavior by

measuring average task end-to-end time, i.e. the differ-

ence in time between a task arrival and the time when

a set of workers satisfying the task’s quality/cost re-

quirements have accepted to take it. This measurement

is taken only for successful tasks and smaller is better.
It can be observed that our proposed algorithms finish

in less than 2 time units mainly because of our worker

replacement strategy. The other algorithms including

Online-Greedy take significantly more time. This jus-

tifies the necessity of pre-computation.

Vary the ratio of task-to-worker arrival rate - Figure 8:

All algorithms perform well when the ratio of task ar-

rival rate to worker arrival rate is small, because of the

oversupply of workers. However, with high task arrival

rate, the index-based strategies (C-DEX and its variants)

outperform all the remaining solutions.

Vary # skills/task - Figure 9: As skills per task in-

crease, the fraction of successful tasks decreases for

all algorithms, since finding the right worker becomes

harder in a high-dimensional task/worker setting. Nev-

ertheless, the index-based strategies still manage to

keep a steadily high performance, outperforming all re-

maining ones.

Vary acceptance ratio - Figure 10: With high accep-

tance ratio, performance improves in general, as work-

ers become more predictable. The index-based strate-

gies consistently outperform the others.

Vary mean skill - Figure 11: As expertise be-

comes scanty (i.e. low values of mean worker skill)

Benchmark and Online-Greedy perform very poorly

because they need to scan and seek more workers

to reach the task skill threshold. The high perfor-

mance on the other hand of C-dex, C-dex+, and

Online-CDEX-Approx-Randomized justifies that the

optimization approach in SmartCrowd is meaningful

for knowledge-intensive tasks (since it is for these tasks

that there may be fewer experts). Another interesting

remark from this figure is the following: in case the ex-

pertise of the worker population is above average (i.e.

above 0.5 out of 1), then our proposed techniques (C-

dex, C-dex+, and Online-CDEX-Approx-Randomized)

are the ones to opt for. In case however the popula-

tion expertise is below average (between 0 to 0.5 out of

1) then the Online-Optimal performs also well. This

indicates that when expertise is low, even solving the

ILP problem “naively” (i.e. in a purely online fashion

like the Online-Optimal does) gives better results than

current state-of-the-art and benchmark solutions. This

advocates further the necessity of formulating KI-C op-

timization as an ILP problem, like we do in this paper.

Worker Addition, Deletion, Update (online) - Figures

12 and 13 We vary the # of new workers, # of deleted

workers,and # of workers with profile updates and mea-

sure the incremental maintenance time for C-dex, C-

dex+, and Online-CDEX-Approx-Randomized. The re-

sults for worker addition are presented in Figure 12. In

Figure 13, we show the results of a more realistic sce-

nario, where all three possible events could occur. To

conduct this experiment, we alter the Poisson process

for worker arrival, such that µ = 10 now denotes an

index maintenance event, which is either to add a new

worker, modify the skill of a randomly chosen worker,

or remove a randomly chosen worker. Results show

20 Senjuti Basu Roy et al.

C-Dex C-Dex+ C-Dex Approx-Rand
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
ai

nt
en

an
ce

 T
im

e
(i

n
m

in
s)

Fig. 13: Index maintenance with
Worker Arrival, Deletion and Upda-
tion

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 15 20

N
or

m
al

iz
ed

 O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Simulation Time (in days)

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

CDEX-Approx-
Rand

Fig. 14: Objective function varying
simulation time

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 15 20

N
or

m
al

iz
ed

 O
bj

ec
ti

ve
 F

un
ct

io
n

V
al

ue

Simulation Time (in days)

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

CDEX-Approx-Rand

Fig. 15: Objective function varying
simulation time with no skill thresh-
old C2 = 0, Xl = 0

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

N
or

m
al

iz
ed

 O
bj

ec
ti

ve
 F

un
ct

io
n

V
al

ue

Number of Skills

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

CDEX-Approx-Rand

Fig. 16: Objective function varying #
of skills/task

0

10

20

30

40

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.75 1

N
or

m
al

iz
ed

 O
bj

ec
ti

ve
 F

un
ct

io
n

Acceptance Ratio

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

CDEX-Approx-Rand

Fig. 17: Objective function varying
acceptance ratio

0

10

20

30

40

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.75 1

N
or

m
al

iz
ed

 O
bj

ec
ti

ve
 F

un
ct

io
n

V
al

ue

Mean Expertise

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

CDEX-Approx-Rand

Fig. 18: Objective function varying
mean skill

0

20

40

60

80

100

120

140

160

180

200

0.2 0.4 0.5 0.6 0.8 1

N
or

m
al

iz
ed

 O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

W1

Benchmark

Online-Greedy

Online-Optimal

C-Dex

C-Dex+

CDEX-Approx-Rand

Fig. 19: Objective function varying
C1, C2

0

10

20

30

40

50

60

70

80

90

2 4 6 8 10 15 20

Fr
ac

ti
on

 o
f S

uc
ce

ss
fu

l T
as

ks

Simulation Time (in days)

Online-CDEX-Approx-
Rand

Online-CDEX-Approx-
Det

Fig. 20: Performance varying simula-
tion time with no skill threshold C2 =
0, Xl = 0

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 15 20

N
or

m
al

iz
ed

 O
bj

ec
ti

ve
 F

un
ct

io
n

V
al

ue

Simulation Time (in days)

CDEX-Approx-Rand

CDEX-Approx-Det

Fig. 21: Objective function varying
simulation time with no skill thresh-
old C2 = 0, Xl = 0

that our incremental index maintenance techniques are

efficient. However, the approximate solutions warrant

higher efficiency compared to the optimal one.

7.2.2 Quality Experiments

For the quality simulation experiments we measure the

value of the normalized objective function.

Index Building (offline phase) The setting is akin

to Section 7.2.1, but here we measure the ob-

jective function value instead. The results (con-

sider the secondary Y-axis of Figure 4) demon-

strate that both approximation algorithms C-dex+and

Offline-CDEX-Approx-Randomized return high qual-

ity solutions that are comparable to their optimal coun-

terpart C-dex.

Worker Replacement (online phase)

Simulation period - Figures 14 and 15 have similar

settings to that of Figure 5 and 6. Our proposed

index-based strategies significantly outperform

the others throughout the period of the simula-

tion. As expected, Benchmark performs the worst.

Online-CDEX-Approx-Randomized returns higher

quality in Figure 15 because the algorithm guarantees

a provable approximation factor under these particular

settings.

Vary # skills-Figure 16: The index-based strategies

outperform all remaining ones, even for tasks that re-

quire multiple skills, similarly to Figure 9.

Vary acceptance ratio - Figure 17: The

index-based strategies C-dex, C-dex+, and

Online-CDEX-Approx-Randomized outperform all

the remaining ones, even with small mean worker

acceptance ratio.

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 21

Vary mean skill - Figure 18: The index-based strategies

consistently win over the rest, including the case where

expertise is very scarce.

Vary C1, C2 - Figure 19: As expected, when C1 in-

creases, all algorithms seek to improve quality more

than cost and task quality increases. The index-based

solutions outperform the rest of their competitors with

high C1 (applications that require optimization over

skills).

Comparing Variants of Online-CDEX-Approx: As our

final experiment, we compare the performance of

the two variants of approximation algorithms - de-

terministic (Online-CDEX-Approx) and randomized

(Online-CDEX-Approx-Randomized). As mentioned in

Section 5, these algorithms have provable approxima-

tion factors under certain conditions with the random-

ized one having a higher approximation factor when

the objective function is submodular. Specifically, we

perform our experiments for the special case where

C2 = 0, Xl = 0 and zero skill threshold, in which the

objective function becomes submodular. As expected,

Figure 20 shows that the randomized variant has a

higher performance. In addition, as shown in Figure 21,

the normalized objective function value is substantially

better than the deterministic variant.

8 Related Work

To the best of our knowledge however, no work to-date

formalizes the problem of KI-C optimization, examines

it theoretically, or proposes principled solutions with

performance guarantees to solve it. In this section, we

discuss related work on traditional micro-task based

crowdsorucing and team collaboration and describe the

differences among them and our contributions.

Micro-task based traditional crowdsourcing:

A growing number of crowdsourcing systems are avail-

able nowadays, both as commercial platforms (like

AMT and CrowdFlower) or for academic use. Exam-

ples of applications include sentence translation, photo

tagging and sentiment analysis, but also query answer-

ing (CrowdDB [12], Qurk [36], Deco [41], sCOOP, Fu-

sionCOMP, MoDaS, CyLog/Crowd4U), entity resolu-

tion(such as CrowdER [47]), planning queries [25], per-

form matching [48], or counting [35].

A common element shared across the above crowd-

sourcing systems is that the tasks that they handle

are of atomic/discrete-quality nature. “Atomic” means

that the task can be decomposed to a set of smaller

units (e.g. a corpus of 10,000 images can be split to

image-level micro-task), each of which is handled by in-

dividual workers (no collaboration). “Discrete-quality”

means that each micro-task has one (or more) correct

answer(s) out of a finite set of possible answers (e.g. an

image either contains a person or not, a license plate

contains one out of n possible discrete possible numer-

ical sequences). In other words each micro-task can be

posited as a multiple-choice question or an n-ary classi-

fication problem [5,19]. Handling these tasks does not

necessitate collaboration, but consensus. That is, many

workers vote separately for each micro-task, and the

task’s “true value” (the correct out of the n possible an-

swers) is inferred by means of majority voting [22], cu-

mulative voting [32], probabilistic generative modelling

[37], or other techniques. The optimization problem in

that case is to select the correct number of workers to

identify the true values efficiently, with as low cost as

possible (plurality optimization problem). Task recom-

mendations to workers has been started to be consid-

ered by recent literature as a means to solve the plu-

rality optimization problem for atomic/discrete quality

tasks [26,4,40], while the vast majority of commercial

systems still relies on “passive” quality assurance mech-

anisms like worker pre-filtering (using pre-qualification

tests or “golden data” [10,23]) or task post-processing

[49,42,16,4].

Knowledge-intensive crowdsourcing (KI-C):

Knowledge-intensive crowdsourcing (KI-C) [29] han-

dles tasks related to knowledge production, such as

article writing, decision-making, science journalism.

These tasks have two important differences from typical

atomic/discrete-quality crowdsourcing discussed above.

First KI-C tasks are less decomposable (writing a news

article cannot be done by decomposing it to sentence

level). Second, the quality of KI-C tasks is measured

in a continuous, rather than a discrete quality scale.

In other words KI-C tasks require an open and not a

close-form answer, i.e. they do not have one correct an-

swer out of a finite set of n possible ones. The non-

decomposable/continuous-quality nature of KI-C tasks

necessitates collaboration among workers rather than

their voting. It also changes the optimization problem,

from a problem of plurality optimization (“should we

hire another worker to correctly classify the task?) to a

problem of worker-to-task assignment (“Which groups

of workers should we hire to achieve that specific level

of quality for the task?”).

Up to now, no work or system optimizes the KI-

C worker-to-task assignment process. Current systems

decide task assignments either by allowing workers to

self-appoint themselves to the tasks (like Wikipedia) or

manually (like the oDesk platform8 where the the per-

8 https://www.odesk.com/

22 Senjuti Basu Roy et al.

son who pays for the task has to personally select work-

ers from a long candidate worker list). The first method

(worker self-appointment) has negative effects on task

quality with a long-tail of low-quality articles and a high

cost in terms of user effort spent on certain articles [31].

The second method (manual assignment) leads to less-

than-optimal allocations, bureaucracy and decision bot-

tlenecks since the manual coordinator cannot possibly

have an overview of the skills of every individual worker

in a reasonable amount of time [24]. As for automated

methods of system-wide worker-to-task assignments in

KI-C, related works are unfortunately too few. Current

studies simply acknowledge the need for more sophis-

ticated strategies to handle task allocations [28,39,30]

and highlight that the fact that task recommendations,

when applied on typical atomic/discrete-quality crowd-

sourcing, have been shown to reduce delays in finding

suitable tasks [51]. Related research also indicates that

matching workers to tasks in wiki settings [34,14] can

help increase the quality of the produced knowledge.

Nevertheless, they do not formalize the problem of KI-C

optimization, examine it theoretically or propose prin-

cipled solutions to address it. Our contribution is one

of the first ever attempts to address this gap.

Team Collaboration: Finally, our problem bears

some resemblance with existing team formation prob-

lems in social networks (SN) [2], in the sense that here

too users are grouped together with the purpose of col-

laboration on a set of tasks. There are however two crit-

ical differences: whereas SN-based team formation relies

on user affinity within the social network, crowdsourc-

ing entails a huge scale of diverse worker pool unknown

to each other, who do not necessarily need the synergy

of a “team” to work together (e.g., a Wikipedia-style
of work can be used). Second, KI-C deals with unique

challenges related to human factors in a dynamic en-

vironment, which is rarely seen for SN-based team for-

mation.

9 Discussion

We examine the task assignment optimization of a

new form of crowd work, namely knowledge-intensive

crowdsourcing (KI-C), which focuses on knowledge pro-

duction rather than on the accomplishment of simple

human tasks. A lot more issues naturally emerge af-

ter this attempt, which need to be discussed and ex-

plored. These are related to integrating the human fac-

tor further into the task-assignment process, to exam-

ining more sophisticated worker collaboration models,

to studying the peripheral processes on which KI-C op-

timization is based and other applications.

9.1 Human Factors and Alternative Modeling

We discuss additional human factors here. User motiva-

tion and its link to productivity is the first factor that

comes to mind: studies (such as [50,27,20]) show that

the correct incentives (not only monetary but also im-

plicit ones like self-fulfillment, reputation, or personal

interests) can play an important role in improving and

sustaining the performance of crowd workers. One ex-

tension would be to enrich worker profiles accordingly

and leverage information such as worker reputation and

interests.

Skill improvement through training is a second hu-

man factor that can be very well coupled with our

framework. Specifically, recent studies [9] show that for

complex tasks, like creative design, worker engagement

leads to increasing levels of expertise, because workers

“learn by doing”. Task assignment could adjust tasks

to the “learning rate” of each worker.

Worker skill deterioration (e.g. due to boredom or

fatigue) has also been observed, especially when work-

ers are engaged over the same type of task too many

times. Therefore, an important addition to the current

assignment algorithms is task assignment variety [7]

and advised micro-breaks [44], taking into consideration

the personal tolerance levels of each worker in regards

to task repetition.

Alternative Wage Model: it is also possible to

devise alternate formalisms of the human factors such

as skills, wage expectation, and acceptance ratio dis-

cussed in Section 2. For example, we could design a

mechanism by which the wage expectation of a worker

depends on the task being performed. This could model

scenarios where the worker might want to charge a
higher wage for tasks requiring advanced skills or re-

quiring longer period for completion (for example, mul-

tiple hours or even days instead of mere minutes). For-

mally, we could define a function f(u, t) that takes as

input two parameters - user profile and task profile -

and outputs the wage expectation for the given task,

denoted by wu,t. Interestingly, such generalization does

not have any significant impact on the hardness of the

problem which remains NP-Complete. It has only a mi-

nor impact in how the wage of the task is computed.

In other words, it changes from
∑
u∈U ut × pu × wu to∑

u∈U ut × pu ×wu,t . As long as wu,t is a constant, no

further changes are required.

9.2 Worker Collaboration

In this paper we assumed a wiki-like collaboration

model, one in which workers collaborate on the task it-

self, editing each other’s contributions, but not directly

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 23

interacting with one another, for example through dis-

cussion. This choice was made to enable hiring and

assignment of workers that had not worked together

before, through the popular platform of Amazon Me-

chanical Turk. Nevertheless, a setting where workers

would be allowed to explicitly interact with each other

could also be envisioned. Naturally, this setting makes

the assignment process more complex since it involves

the incorporation of additional parameters, like worker

affinity, in the problem formulation. It also poses new

constraints, for example that workers should not only

have a collectively high expertise, but that they should

also get along well one with the other, or that the

assignment mechanism should effectively address risks

emerging from user-to-user collaboration, like knowl-

edge production bottlenecks and conflict resolution. We

are currently examining specifically these directions.

A second topic in this line of research is the type

of user roles assumed by the assignment mechanism. In

our present work we implicitly assume one main worker

role, i.e. the worker as a “contributor”. More roles can

be assumed, including workers as “reviewers” where

workers evaluate each other’s contributions. Note that

this role has been partially implemented in our real-user

study. Integrating it systematically into the worker-to-

task assignment, e.g. by coupling the latter with a peer

review process, will enable to further fine-tune the as-

signment process. Other roles that can be assumed, de-

pending on the exact collaborative work setting and

the specific nature of the crowdsourced tasks, include

“task initiator”, “team supervisor”, “conflict media-

tor”, “task workflow planner”, “workflow controller”

and “solution synthesizer”[9,30,52].

9.3 Other Components of KI-C

Our algorithms optimize worker-to-task assignment of

KI-C. We thus rely on existing work to implement other

components such as the quantification of worker skills,

and the evaluation of worker contributions.

In regards to worker skill quantification, consider

for instance the following: in our real-user study we

map worker skills to numerical values by explicitly us-

ing a multiple-choice test that measures knowledge on

our topics of interest. This method is adequate for

our experimental proof-of-concept. However, for large-

scale applications, this technique could induce extra

cost and create a bottleneck between the time the

worker joins the platform until she could start being as-

signed to tasks. Performing the quantification of worker

knowledge in a universal and scalable fashion across

platforms, for example by using explicit and machine

learned evaluation [33] or implicit evaluation [8] of past

worker contributions, could significantly minimize the

cost of learning worker skills and thus help scale our

approach. One very recent work that showcases how

worker skill quantification can be achieved at large scale

is [21].

In regards to task evaluation, we choose to crowd-

source the assessment of each finished article, using a

fixed number of worker-reviewers. Then, we assume a

full confidence in these estimations, exactly as it is cur-

rently the case in many real-world systems like con-

ference management ones. There are two issues here:

one related to the subjectivity of the evaluations and

the other related to the cost of the reviewers. Given

that a person’s evaluation of another person’s contribu-

tion is always subjective, we need a sufficient number

of reviewers to attain evaluations with acceptable con-

fidence. On the other hand, adding too many reviewers

can excessively increase the cost of article evaluations

and this issue is crucial given the volume of tasks that

our approach handles. It would be thus very interesting

to see our method combined with works such as [26]

that use statistical inference to obtain a good level of

confidence over the estimation and subsequently stop

the evaluation, as well as with works that use unsuper-

vised statistical methods to estimate task quality for

crowdsourcing tasks of unstructured response formats

(like KI-C tasks) taking into account reviewer bias [3].

This would help answer questions such as: “what is the

optimal number of reviewers needed to evaluate each

specific task?”, “what is the minimum evaluation con-

fidence level to decide whether a certain task is above

or below its quality threshold?”, “what is the relative

weight that each individual’s assessment has?”, as well

as other related questions.

9.4 Beyond Collaborative Editing

In our real-user experiments we apply our framework

to one specific KI-C application, that of citizen jour-

nalism. Based on this proof-of-concept, we can easily

envision a meta-platform, on top of existing ones, for

news coverage with quality and cost guarantees, com-

peting with current centralized ones, like Reuters. It is

our plan to examine building and making available such

a meta-service framework, in the future.

Furthermore, it is crucial to notice that the

knowledge-intensive tasks on which we focus are just

one type of complex crowdsourcing task. Our method-

ology presents the advantage of being easy to adapt for

the optimization of crowd performance on other com-

plex task types. That is because most complex tasks,

like idea generation, creative design or innovation seed-

ing, are similar in nature to KI tasks, in that they also

24 Senjuti Basu Roy et al.

require the collaboration of multiple workers of vary-

ing skills, while their quality is measured in a continu-

ous rather than a discrete scale. Thus, one can envision

many more complex-task applications that can profit

from our approach.

Fan-subbing Application: As discussed in Intro-

duction, there are other popular KI-C tasks such as

fan-subbing9, where a group of workers work together

to translate a foreign movie (for example, translate a

French movie in English). Fan-subbing requires multi-

ple skills such as familiarity with two languages (source

and target) in addition to other linguistic skills such as

comprehension, transcription, etc. The skill aggregation

is also additive for such an application, as the workers

rectify the potential translation issues in output of other

workers. The quality of a translation could be measured

in a continuous scale using subjective measures and in-

tuitively is proportional to the skills of workers who

took part in the translation. The domain experts typi-

cally associate a desired quality per task. Workers are

also incentivized, sometimes with actual money, which

comprise of their wage. Naturally, a task is likely to be

associated with a cost budget. We can now observe that

this application could naturally be formulated using our

framework.

For example, it would be very interesting to see how

our framework compares and can help optimize cur-

rent platforms, such as oDesk10, which work with free-

lancers on creative tasks like marketing, web design,

development or writing. Similarly, creative product de-

sign applications like Quirky.com11 and social innova-

tion ones like OpenIDEO.com12, where users build on

each other’s ideas, can also significantly profit from our

approach. Related to this, it is our plan to examine

and expand our approach across platforms and on other

types of complex tasks besides knowledge writing, like

idea generation or creative design.

10 Conclusion

In this paper we propose SmartCrowd, a unified

framework for optimizing worker-to-task assignment in

knowledge intensive crowdsourcing (KI-C). KI-C is a

new form of crowd work, which focuses on knowledge

production rather than simple tasks and whose opti-

mization in terms of quality and cost is critical to create

value. Through SmartCrowd we formalize the KI-C

problem and show that it can be mapped to an in-

9 http://en.wikipedia.org/wiki/Fansub
10 https://www.odesk.com/
11 https://www.quirky.com/
12 http://openideo.com/

dex design problem (C-dex), which we analyse theo-

retically and for which we propose optimal and approx-

imate principled solutions. SmartCrowd relies on a

set of pre-computed indexes, and maintains them adap-

tively to enable effective worker-to-task assignment. In

addition, our framework integrates multiple human fac-

tors, such as worker expertise, minimum wage require-

ments and acceptance ratio, into the assignment pro-

cess and it is flexible enough to be adapted to various

KI-C applications. We validate SmartCrowd through

extensive real-data and synthetic experiments, consid-

ering both quality and performance, and show that its

algorithms can indeed guide the worker crowd towards

superior knowledge production results. Multiple issues

emerge, related to human factors, collaboration models,

peripheral components and possible applications, which

we discuss extensively. Overall, it is our belief that as

crowdsourcing moves towards more complex tasks, and

as knowledge production from the crowd becomes more

and more important, SmartCrowd can help establish

a basis for optimization, which future research efforts

will find useful, apply and extend.

References

1. Alimonti, P.: Non-oblivious local search for max 2-ccsp
with application to max dicut. WG ’97, pp. 2–14 (1997)

2. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis,
A., Leonardi, S.: Online team formation in social net-
works. In: WWW, pp. 839–848 (2012)

3. Baba, Y., Kashima, H.: Statistical quality estimation for
general crowdsourcing tasks. KDD (2013)

4. Boim, R., Greenshpan, O., Milo, T., Novgorodov, S.,
Polyzotis, N., Tan, W.C.: Asking the right questions in
crowd data sourcing. In: ICDE (2012)

5. Bragg, J..M., Weld, D.S.: Crowdsourcing multi-label
classi cation for taxonomy creation. In: HCOMP (2013)

6. Chai, K., Potdar, V., Dillon, T.: Content quality assess-
ment related frameworks for social media. ICCSA ’09

7. Chandler, D., Kapelner, A.: Breaking monotony with
meaning: Motivation in crowdsourcing markets. Journal
of Economic Behavior & Organization 90(0) (2013)

8. Dalip, D.H., Gonçalves, M.A., Cristo, M., Calado, P.: Au-
tomatic assessment of document quality in web collabo-
rative digital libraries. JDIQ 2(3) (2011)

9. Dow, S., Kulkarni, A., Klemmer, S., Hartmann, B.: Shep-
herding the crowd yields better work. CSCW (2012)

10. Downs, J.S., Holbrook, M.B., Sheng, S., Cranor, L.F.:
Are your participants gaming the system?: screening me-
chanical turk workers. CHI ’10

11. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-
monotone submodular functions. In: FOCS (2007)

12. Feng, A., Franklin, M.J., Kossmann, D., Kraska, T., Mad-
den, S., Ramesh, S., Wang, A., Xin, R.: Crowddb: Query
processing with the vldb crowd. PVLDB 4(12)

13. Garey, M.R., Johnson, D.S.: Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness (1979)

14. Goel, G., Nikzad, A., Singla, A.: Allocating tasks to work-
ers with matching constraints: Truthful mechanisms for
crowdsourcing markets. WWW (2014)

Task-Assignment Optimization in Knowledge Intensive Crowdsourcing 25

15. Goemans, M.X., Correa, J.R. (eds.): Lecture Notes in
Computer Science, vol. 7801. Springer (2013)

16. Guo, S., Parameswaran, A.G., Garcia-Molina, H.: So who
won?: dynamic max discovery with the crowd. In: SIG-
MOD, pp. 385–396 (2012)

17. Han, J., Kamber, M.: Data Mining: Concepts and Tech-
niques. Morgan Kaufmann (2000)

18. Ho, C.J., Vaughan, J.W.: Online task assignment in
crowdsourcing markets. In: AAAI (2012)

19. van der Hoek, W., Padgham, L., Conitzer, V., Winikoff,
M. (eds.): IFAAMAS (2012)

20. Hossain, M.: Crowdsourcing: Activities, incentives and
users’ motivations to participate. In: ICIMTR (2012)

21. Ipeirotis, P., Gabrilovich, E.: Quizz: Targeted crowd-
sourcing with a billion (potential) users. In: WWW
(2014)

22. Ipeirotis, P.G., Provost, F., Wang, J.: Quality manage-
ment on amazon mechanical turk. HCOMP (2010)

23. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and
reputation systems for online service provision. Decis.
Support Syst. 43(2) (2007)

24. Joyce, E., Pike, J.C., Butler, B.S.: Rules and roles vs. con-
sensus: Self-governed deliberative mass collaboration bu-
reaucracies. American Behavioral Scientist 57(5) (2013)

25. Kaplan, H., Lotosh, I., Milo, T., Novgorodov, S.: Answer-
ing planning queries with the crowd. In: PVDLB (2013)

26. Karger, D.R., Oh, S., Shah, D.: Budget-optimal task
allocation for reliable crowdsourcing systems. CoRR
abs/1110.3564 (2011)

27. Kaufmann, N., Schulze, T., Veit, D.: More than fun and
money. worker motivation in crowdsourcing-a study on
mechanical turk. In: AMCIS (2011)

28. Kittur, A., Lee, B., Kraut, R.E.: Coordination in col-
lective intelligence: The role of team structure and task
interdependence. CHI (2009)

29. Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E.,
Shaw, A., Zimmerman, J., Lease, M., Horton, J.: The
future of crowd work. In: CSCW ’13 (2013)

30. Kulkarni, A., Can, M., Hartmann, B.: Collaboratively
crowdsourcing workflows with turkomatic. CSCW ’12

31. Lam, S.T.K., Riedl, J.: Is wikipedia growing a longer tail?
GROUP ’09 (2009)

32. Lee, S., Park, S., Park, S.: A quality enhancement of
crowdsourcing based on quality evaluation and user-level
task assignment framework. In: BIGCOMP (2014)

33. Lykourentzou, I., Papadaki, K., Vergados, D.J., Polemi,
D., Loumos, V.: Corpwiki: A self-regulating wiki to pro-
mote corporate collective intelligence through expert peer
matching. Inf. Sci. 180(1) (2010)

34. Lykourentzou, I., Vergados, D.J., Naudet, Y.: Improv-
ing wiki article quality through crowd coordination: A
resource allocation approach. Int. J. Semantic Web Inf.
Syst. 9(3), 105–125 (2013)

35. Marcus, A., Karger, D., Madden, S., Miller, R., Oh, S.:
Counting with the crowd. In: PVLDB (2013)

36. Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.:
Human-powered sorts and joins. PVLDB. (2011)

37. Matsui, T., Baba, Y., Kamishima, T., Hisashi, K.:
Crowdsourcing quality control for item ordering tasks.
In: HCOMP (2013)

38. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of ap-
proximations for maximizing submodular set functionsi.
Mathematical Programming (1978)

39. O’Mahony, S., Ferraro, F.: The emergence of governance
in an open source community. Academy of Management
Journal 50(5) (2007)

40. Parameswaran, A.G., Garcia-Molina, H., Park, H., Poly-
zotis, N., Ramesh, A., Widom, J.: Crowdscreen: algo-
rithms for filtering data with humans. In: SIGMOD
(2012)

41. Park, H., Widom, J.: Query optimization over crowd-
sourced data. In: VLDB (2013)

42. Ramesh, A., Parameswaran, A., Garcia-Molina, H., Poly-
zotis, N.: Identifying reliable workers swiftly. Technical
report (2012)

43. Roy, S.B., Lykourentzou, I., Thirumuruganathan, S.,
Amer-Yahia, S., Das, G.: Crowds, not drones: Model-
ing human factors in interactive crowdsourcing. In:
DBCrowd (2013)

44. Rzeszotarski, J.M., Chi, E., Paritosh, P., Dai, P.: In-
serting micro-breaks into crowdsourcing workflows. In:
HCOMP. AAAI (2013)

45. Soler, E.M., de Sousa, V.A., da Costa, G.R.M.: A mod-
ified primal-dual logarithmic-barrier method for solving
the optimal power flow problem with discrete and contin-
uous control variables. European Journal of Operational
Research 222(3) (2012)

46. Vondrák, J.: Symmetry and approximability of submod-
ular maximization problems. FOCS (2009)

47. Wang, J., Kraska, T., Franklin, M.J., Feng, J.: Crowder:
Crowdsourcing entity resolution. PVLDB (11)

48. Wang, J., Li, G., Kraska, T., Franklin, M.J., Feng, J.:
Leveraging transitive relations for crowdsourced joins. In:
SIGMOD Conference, pp. 229–240 (2013)

49. Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan,
J.: Whose Vote Should Count More: Optimal Integration
of Labels from Labelers of Unknown Expertise. In: NIPS
(2009)

50. Yu, L., André, P., Kittur, A., Kraut, R.: A comparison
of social, learning, and financial strategies on crowd en-
gagement and output quality. CSCW (2014)

51. Yuen, M.C., King, I., Leung, K.S.: Task recommendation
in crowdsourcing systems. CrowdKDD (2012)

52. Zhang, H., Horvitz, E., Miller, R.C., Parkes, D.C.:
Crowdsourcing general computation. ACM CHI 2011
Workshop on Crowdsourcing and Human Computation

