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Abstract

Teamwork is a common aspect of higher education programs,
offering various benefits such as enhancing interpersonal
skills and improving learning outcomes. However, the current
methods of team formation in project-based courses, includ-
ing teacher-designed, student-led, and random approaches,
have limitations and do not fully optimize the process. This
paper introduces the educational Team Formation Problem
(e-TFP) and proposes five strategies to optimize team for-
mation. Preliminary results using a real-world university-
level dataset demonstrate that these strategies outperform the
heuristic human teacher solution and provide valuable in-
sights for future team formation in educational settings.

1 Background and Related Work
Currently, most higher education programs include team-
work, offering benefits that range from enhanced inter-
personal skills to better retention of information and im-
proved learning outcomes. Universities typically employ
three methods for forming teams: instructor-led, student-led,
or random allocation. Each method has its own set of advan-
tages and limitations.

Instructor-led team formation (Hilton and Phillips 2010;
Rusticus and Justus 2019) enables instructors to decide
which student will work with whom in a top-down manner,
based on objectives such as skill alignment, project prefer-
ences, or personality. Yet this approach often leads to inter-
personal conflicts and suboptimal outcomes due to the in-
structor’s limited knowledge of individual students’ prefer-
ences, as well as capacity constraints, especially in medium-
or large-sized courses (Akbar, Gehringer, and Hu 2018).

In contrast, student-led team formation allows bottom-up
team creation, often based on friendship or prior collabora-
tive experiences. While this method reduces friction, it also
has downsides. Student-led teams may foster good relation-
ships but might lack the necessary skills to be successful in
the specific course (Basta 2011; Chapman et al. 2006). Fur-
thermore, this method could lead to “all-star” teams, where
stronger students group together, leaving “weaker” mem-
bers with subpar performance and unequal learning oppor-
tunities (Oakley et al. 2004). This approach also disadvan-
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tages students who lack strong networks or are pursuing
non-popular elective curricula.

The third method, random team selection, involves a
purely arbitrary process. It does not optimize teams, result-
ing in significant variations in team performance.

Various studies have explored algorithmic team forma-
tion optimization in business, crowdsourcing, and educa-
tion. Many focus on the problem of expert selection, i.e.,
selecting team members to form one or more optimal teams
(Bahargam et al. 2019; Bhowmik et al. 2014), without the
requirement that every participant must belong to a team.
These primarily address business scenarios. Looking into
the exact problem parameters they focus on, some studies
focus on tie strength optimization, where the ties represent
relationship scores (Yaakob and Kawata 1999; Zhang and
Zhang 2013), or communication costs (Lappas, Liu, and
Terzi 2009) among the candidates, often combined with the
optimization of other elements such as skill coverage for the
given job (Lappas, Liu, and Terzi 2009). Other studies focus
on team formation to optimize for project preference match-
ing (Abraham, Irving, and Manlove 2003), and others center
on skill coverage, occasionally combined with project pref-
erences (Donndelinger et al. 2021) or workload (Vombat-
kere and Terzi 2023). However, to the best of our knowl-
edge, no study so far has tackled team optimization in a set-
ting where all participants must be included (typical in ed-
ucation), addressing both the participants’ bottom-up team-
mate preferences and the teacher’s top-down skill coverage
requirements simultaneously.

In this paper, we formally model the educational Team
Formation Problem (e-TFP) and propose five strategies for
its optimization. We then evaluate the strategies using a
real-world dataset from a medium-sized computer science
course. Our results demonstrate that four out of the five
proposed strategies outperform the heuristic solution em-
ployed by the course instructor in terms of skill coverage,
student preference realization, and computational time. We
conclude with a discussion of our findings, limitations, and
suggestions for future research in team formation optimiza-
tion for educational settings.

2 e-TFP problem modeling
The e-TFP problem model consists of a basic problem
model, which can be extended with a number of objectives.



The objectives can be added altogether or separately, trans-
forming the basic e-TFP model into an optimization prob-
lem. This approach guarantees an initial feasible solution for
the teacher can always exist, enabling the course to begin.
The initial solution can then be improved based on the com-
bination of input parameters and optimization objectives the
teacher chooses to optimize for.

Basic e-TFP problem model
Notations. We consider 0 ∈ N and N+ = N \ {0}. Let
[x, y] = {i ∈ Z | x ≤ i ≤ y} for x, y ∈ Z with x ≤ y, and
[x] = [0, x − 1] for x ∈ N+. #A denotes the cardinality of
any set A. We call a partition P an l-partition if #P = l.

Input: Team data. A course consisting of m ∈ N+ stu-
dents must be partitioned into l ∈ N+ teams. The additional
size bounds kmin, kmax ∈ N restrict the size of each team.
We assume kmin ≤ m

l ≤ kmax, otherwise no feasible l-
partition of m students exists that respects the size bounds.

Preference data. Students rate each other numerically on
a scale [−d, d] with d ∈ N+, reflecting their desire to col-
laborate in a team. Higher values indicate higher preferences
with 0 representing a neutral preference and negative values
corresponding to an active desire to not wanting to work to-
gether. These ratings are categorized as “weak” teammate
preferences. Students can also express a “strong” teammate
preference when they specifically want to work with another
student, indicated by some fixed value X ∈ N\[−d, d]. Such
strong preferences are often based on previous collaborative
experiences. Student evaluations create a preference matrix
P ∈ Nm×m containing values pa,b ∈ [−d, d]∪{X} for stu-
dents a, b ∈ [m]. This matrix includes both weak and strong
preferences to maintain consistency in the input data and is
generally not symmetric.

Skill data. The course employs a variety of n ∈ N+ skills.
Skill levels are being measured in the range [e] with e ∈ N+.
Student skills form a skill matrix S ∈ Nm×n with student
a ∈ [m] possessing the skill level sai ∈ [e] for skill i ∈ [n].
Given a skill threshold v ∈ [e] provided by the teacher, a
student a is considered to cover a skill i if sai ≥ v. This
extends to teams, i.e. a team covers a skill if at least one of
its members covers that skill. Additionally, the minimal skill
coverage c ∈ [n] indicates the minimal number of skills each
team has to cover.

Solution. The basic problem solution is a partition of m
students into l teams such that team sizes are respected and
each team covers at least c skills. Thus, a feasible solu-
tion is a total function f : [m] → [l] such that ∀j ∈ [l]
kmin ≤ #f−1(j) ≤ kmax (team-size constraint) and
#{i ∈ [n] | ∃a ∈ f−1(j) : sai ≥ v} ≥ c (team-skill con-
straint). If c = 0, there always exists a trivial solution.

Extended e-TFP problem model
We now add to the basic e-TFP model objectives concerning
the preferences, hence turning it into an optimization prob-
lem. Let M = {(a, b) ∈ [m]2 | f(a) = f(b), a ̸= b} denote
all pairs of students that are on the same team in some given
feasible solution f . Furthermore, we call a preference pa,b

realized if students a and b are assigned to the same team,
i.e. (a, b) ∈ M .

• O1 – Minimize teammate preference dissatisfac-
tion. Maximize the smallest realized preference, i.e.
min(a,b)∈M pa,b.

• O2 – Maximize teammate preference satisfaction.
Maximize the sum of all realized preference values, i.e.∑

(a,b)∈M pa,b.

• O3+/−
p0 – Maximize/minimize specific preferences.

Maximize (+) or minimize (−) the number of real-
ized preferences with a value of p0, i.e. #{(a, b) ∈
M | pa,b = p0}.

3 e-TFP as a modular ILP problem
We formulate e-TFP as a modular integer linear program-
ming (ILP) problem involving a base ILP model and ex-
tensions for the individual objectives. This allows us to ex-
plore multiple strategies by combining and optimizing dif-
ferent objectives in a hierarchical manner. We use the Gurobi
solver version 10.0.1 for the implementation. To ease read-
ability, we make use of indicator, min and logical constraints
supported by Gurobi in the following ILP model.

Base model. The base model only deals with finding a fea-
sible solution for the basic e-TFP problem. It defines the fol-
lowing variables: xa,j ∈ {0, 1} indicates whether student a
is assigned to team j, yj,i ∈ N counts how many members of
team j cover the skill i, and zj,i ∈ {0, 1} indicates whether
team j covers skill i. A feasible solution then respects the
following constraints:∑

j∈[l]

xa,j = 1 ∀a ∈ [m] (1)

∑
a∈[m]

xa,j ≥ kmin ∀j ∈ [l] (2)

∑
a∈[m]

xa,j ≤ kmax ∀j ∈ [l] (3)

yj,i =
∑

a∈[m]:sai ≥v

xa,j ∀j ∈ [l], i ∈ [n] (4)

zj,i = min(1, yj,i) ∀j ∈ [l], i ∈ [n] (5)∑
i∈[n]

zj,i ≥ c ∀j ∈ [l] (6)

Constraint (1) ensures that each student a is assigned to
exactly one team, while (2) and (3) keep each team’s size
within the specified bounds. The team skill constraint is
modeled by constraints (4) through (6). Constraints (4)
counts the members of team j covering skill i. This count
is transformed into the binary indicator zj,i in constraint (5),
which is then used in constraint (6) to ensure each team cov-
ers a minimum of c skills.

O1 – Minimize teammate preference dissatisfaction.
With objective O1, we seek to avoid assigning two students
who do not wish to work together to the same team. This



requires the following additional variables: qa,b ∈ {0, 1} in-
dicates whether students a and b are assigned to the same
team and r ∈ R models the lowest realized preference any-
where in the solution. The base model is then extended as
follows: Maximize r subject to:

qa,b = 1 =⇒ xa,j = xb,j ∀a, b ∈ [m], j ∈ [l] (7)
qa,b = 0 =⇒ xa,j + xb,j ≤ 1 ∀a, b ∈ [m], j ∈ [l] (8)
qa,b = 1 =⇒ r ≤ pa,b ∀a, b ∈ [m] (9)

Constraints (7) and (8) ensure that indicator qa,b is set to 1 if
and only if students a and b are assigned to the same team.
Constraint (9) bounds r to the preference pa,b between a and
b if they are assigned to the same team. Hence, maximizing r
ensures optimal solutions avoid low-preference students on
the same team whenever feasible.

O2 – Maximize teammate preference satisfaction. Ob-
jective O2 maximizes the sum of realized preferences. Vari-
able ta,b,j ∈ {0, 1} is introduced to indicate whether stu-
dents a and b are both assigned to team j. This leads to the
following base model extension:

max
∑

a,b∈[m],j∈[l]

ta,b,jpa,b (10)

s.t. ta,b,j = xa,j ∧ xb,j ∀a, b ∈ [m], j ∈ [l] (11)

Constraint (11) ensures that ta,b,j is set to 1 if and only if
both students a and b are assigned to team j. Objective (10)
models all realized preferences. Note that the base model’s
constraints ensure that for each student pair (a, b) exactly
one of the indicator variables ta,b,j is set to 1. Due to pre-
liminary tests showing that certain modeling strategies sig-
nificantly reduce the time Gurobi takes to solve these mod-
els, the indicator for two students being on the same team is
modeled differently compared to objective O1.

O3+/−
p0 – Maximize/minimize specific preferences. Ob-

jective O3 maximizes (+) or minimizes (−) the number of
realized preferences with a value of p0. Let A = {(a, b) ∈
[m]2 | pa,b = p0} be the set of student pairs with such pref-
erences. Variable ta,b,j ∈ {0, 1} is introduced only for all
(a, b) ∈ A, indicating whether students a and b are both as-
signed to team j. The base model extension is as follows:

max/min
∑

(a,b)∈A,j∈[l]

ta,b,j (12)

s.t. ta,b,j = xa,j ∧ xb,j ∀(a, b) ∈ A, j ∈ [l] (13)

Objective (12) maximizes or minimizes the number of stu-
dent pairs of interest assigned to the same team. Constraint
(13) is the same as (11).

4 Experimental results
We evaluate our approach using a real-world dataset from a
university-level, project-based course. The course consisted
of 60 students, split into groups of 4 to 6 people. We are
provided with an anonymized skill matrix, denoting the skill
level on a 0-5 scale of each student across 6 distinct skills,
and a preference matrix with d = 2 and a value of X = 4

Realized preferences
Strategy X 2 1 0 -1 -2 Time
greedy human solution 77 14 6 134 5 4 -
e-TFP(O1) 7 2 6 235 0 0 5s
e-TFP(O2) 106 28 8 103 2 1 4m 7s
e-TFP(O3+X ) 107 22 6 104 3 6 12s
e-TFP(O1, O3+

X ) 103 19 4 122 0 0 5m 29s
e-TFP(O3−−2, O3−

−1, O3+
X ) 103 19 4 124 0 0 45s

Table 1: Strategy comparison.

for strong preferences. A teacher’s heuristic solution serves
as a baseline for comparison (greedy human solution). We
use two evaluation metrics: i) the number of realized strong
and weak teammate preferences, and ii) the computational
time of each solution. For this comparison, we set the skill
threshold to v = 4 and the minimal skill coverage to c = 4.

Strategy comparison. Table 1 summarizes the strategy
performance and comparison results. Each strategy uses dif-
ferent objectives indicated by its name (e.g., e-TFP(O3+

X )
uses objective O3 to maximize the number of strong re-
alized teammate preferences). Multiple objectives are opti-
mized hierarchically from left to right.

Almost all strategies outperformed the heuristic teacher
solution in minimizing student dissatisfaction from being
in the same team with undesired teammates. Except e-
TFP(O1), the human greedy solution had the fewest real-
ized strong preferences (X), indicating its ineffectiveness
in considering strong teammate preferences. As anticipated,
e-TFP(O2) and e-TFP(O3+X ) produced the best solution
in terms of maximizing weak and strong teammate pref-
erences. Additionally, e-TFP(O1, O3+X ) and e-TFP(O3−

−1,
O3−−2, O3+

X ) had no realized preferences with values of −2
and −1, showcasing their effectiveness at avoiding unde-
sired teammate preferences. All strategies were computa-
tionally efficient, taking seconds to a few minutes, while
yielding optimal solutions based on their objectives. This
renders them suitable for time-sensitive scenarios like online
team formation. Finally, our strategy comparison indicates
that a trade-off exists between minimizing student dissatis-
faction and maximizing satisfaction (weak or strong).

5 Conclusion and Future work
This paper models the educational Team Formation Prob-
lem (e-TFP), addressing optimal student team composition
by considering both bottom-up teammate preferences and
top-down teacher skill coverage requirements. We propose
five modular strategies to solve it, with results showcasing
their superior performance over the human (teacher) greedy
solution, while maintaining computational efficiency. Our
findings also underscore the trade-offs teachers must con-
sider based on course requirements. This study advances al-
gorithmic team formation optimization, for better learning
outcomes and higher student satisfaction. Future work in-
cludes testing larger inputs, varied skill coverage require-
ments, diverse teammate preference formats, and dynamic
regrouping based on adaptations of the original solution.
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