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Abstract The volume of available information is growing, especially on the web, and in

parallel the questions of the users are changing and becoming harder to satisfy. Thus there

is a need for organizing the available information in a meaningful way in order to guide

and improve document indexing for information retrieval applications taking into account

more complex data such as semantic relations. In this paper we show that Formal Concept

Analysis (FCA) and concept lattices provide a suitable and powerful support for such a

task. Accordingly, we use FCA to compute a concept lattice, which is considered both a

semantic index to organize documents and a search space to model terms. We introduce

the notions of cousin concepts and classification-based reasoning for navigating the concept

lattice and retrieve relevant information based on the content of concepts. Finally, we detail

a real-world experiment and show that the present approach has very good capabilities for

semantic indexing and document retrieval.

1 Introduction

The increasing amount of information available nowadays implies more and more the ability

to accurately retrieve documents relevant to user needs. Several approaches have been pro-

posed, regarding this task, in the field of information retrieval (IR) [17]. Document retrieval

for example, a sub-task of IR, focuses on how to exploit the basic elements of information

that documents contain (terms, phrases, links, etc.) and their in-between relations, in order

to construct a document index that users can browse and query. However, as information

becomes more complex, high-dimensional and domain-specific, these information elements

become too limited in their capacity to identify relevant documents for a given user need,

and thus other factors, such as semantics, need to be considered for the purpose of document

indexing and retrieval. Consequently, semantic indexing for document retrieval has gained

importance in the IR literature [8]. In this work we present a novel technique to combine

both, i.e. the relations among documents through the terms they share and the semantics of
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LORIA - CNRS - INRIA - Univesité de Lorraine, BP 239, 54506 Vandœuvre-les-Nancy.

Ioanna Lykourentzou

Centre de Recherche Public Henri Tudor - 29, avenue John F. Kennedy L-1855, Luxembourg.



2 Victor Codocedo et al.

those terms, in order to improve the performance of document retrieval systems. To achieve

this, we combine two typical document retrieval techniques, namely “navigation” among

document relations and “ranking” of documents, using a notion of similarity between the

semantics of document terms and the keywords of a user query. Both techniques, as shown

in [3], can be naturally modelled and implemented in a document-term concept lattice com-

puted from a document collection.

Formal Concept Analysis (FCA) is a theoretical as well as practical framework for clas-

sifying objects in a concept lattice based on the relations they have through the attributes

they share [12]. As such, FCA can be used to understand and exploit the relations that docu-

ments have w.r.t. the terms they have in common. Therefore the concept lattice can be used

to facilitate the navigation through a document space. Concept lattices have been used in

a variety of domains on information sciences [27]. Particularly, on the domain of IR many

approaches have demonstrated their usefulness regarding document indexing and retrieval

[4,6,10,13,23,25,26]. Furthermore, they have proved to yield better or comparable results

with regards to traditional document retrieval approaches, such as Hierarchical Clustering

and Best-Match Ranking [3]. Despite this fact, as described in [4] and in [25], a few works

exist in the area of semantic indexing using concept lattices.

More formally, in this paper we present a semantic indexing and document retrieval

technique based on FCA. It relies on the general idea of constructing a document-term con-

cept lattice used as an index to answer a given user query. The benefits of using a concept

lattice as a query index are two-fold. Firstly, the concept lattice provides a structured sup-

port for the full query space (possible queries in a document collection), since it contains

all possible modifications (or variations) of the original user query and their corresponding

documents, organized in a partial order. Therefore it allows to consider the problem of doc-

ument retrieval as a problem of navigation inside the lattice, starting from an original “query

concept” and following the principles of classification-based reasoning [22]. Secondly, the

lattice allows an easy incorporation of domain knowledge at attribute (term) level, thus sig-

nificantly improving the semantic aspect of document retrieval that we need to address. For

this, we develop a novel concept lattice exploration strategy based on the notion of “cousin

concepts”, as well as a new approach for ranking concepts based on their in-between seman-

tic similarities [11], measured using an external lexical hierarchy. In the same way we anchor

our document indexing and retrieval technique to the formal concept analysis definitions, we

frame the entire process (comprising from document analysis to results presentation) to the

knowledge discovery in databases (KDD) framework [1]. From a process design perspec-

tive, we take advantage of the robust and clear KDD process to guide the main steps to

be completed in order to create an IR system which satisfies the users’ information needs,

in this case represented by small sub-sets of documents of vast document corpora. From a

theoretical perspective, KDD is an accepted framework with a well established supporting

community and an extensive literature regarding its relations with FCA [24].

To summarize, the main contributions of this paper are the introduction of cousin con-

cepts and the use of semantic relations to enable document ranking on a concept lattice-

based information retrieval system, built and described as a KDD-like process. Finally, we

validate our approach using 4 typical IR document datasets and comparing it to 3 currently

used document retrieval techniques. Results show that our approach achieves better perfor-

mance for most of the ranking evaluation methods used.

The rest of this paper is organized as follows: Section 2 presents the basic technical

background, comprising the notions of FCA, concept lattices and concept lattice-based in-

formation retrieval. Section 3 presents our document retrieval system CLAIR (concept lat-

tices for information retrieval), built as a KDD-like approach that details the mains aspects
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of this work (lattice navigation, cousin concepts and semantics-based ranking). Section 4

presents and discusses the experimental evaluation. Section 5 presents the related work. Fi-

nally Section 6 concludes the paper and presents perspectives.

2 Background

2.1 Information content as a semantic relation measure

We can measure the semantic relation between any two terms by using the measure known as

Lin similarity [16]. This is a measure related to the amount of information carried by a term

or a word within a context (piece of text, document or corpus). Consider for example that

we have a medical document D1 indexed by two terms: “arthroscopy”1 and “complication”

and that we are trying to find documents similar to D1. In order to do so, we take one of D1

terms (let us pick the term “arthroscopy”) and look for documents that contain that term.

Consider that we have two of such documents, the first containing the terms “arthroscopy”

and “practice” and the second containing “arthroscopy” and “infection”. The question now

is how to identify which of these documents is more similar to the original one. Intuitively,

we may choose the one with the term “infection” which supposes a kind of “complication” in

the context of a surgery such as an arthroscopy (indeed, a very serious complication), while

the term “practice” is much more general making the document with that term less similar

to the original. This notion of information correlation between two terms or between the

information content shared by them in a given context can be measured with Lin similarity

which takes in consideration the actual frequency correlation in a text corpus as well as the

commonalities those terms have in a lexical hierarchy (such as a dictionary). To formalize,

given two terms m1 and m2, the Lin similarity between m1 and m2 is defined as:

lin(m1,m2) =
2 log p(ms)

log p(m1) + log p(m2)
(1)

where p(mi) is the probability of the term mi to appear in a corpus of documents and

ms is the “lowest common subsumer‘” of terms m1 and m2 in the lexical hierarchy. In this

work, we use the Brown corpus2, as the corpus of documents to measure the probability of

term appearance, and WordNet as the lexical hierarchy that will yield the lowest common

subsumer of the terms. These resources were selected since they are widely used in IR

systems. Nevertheless, our approach is not restricted to use them exclusively and they can be

replaced for other similar resources related to a given domain. In the following, we provide

a short description for these resources.

Brown Corpus. The Brown Corpus is a general text collection, which contains samples

of 500 English language text documents, and approximately one million words, widely used

in text linguistics. The Brown corpus was used in this work to calculate term frequencies

(p(mi) in Equation 1).

WordNet. WordNet3 is a well-known semantic dictionary, which associates terms with

their meanings, called synsets [21]. Each term in WordNet may be associated with several

synsets, where each synset corresponds to one specific meaning of the term. Synsets inside

WordNet are organized into a hierarchical tree structure, based on their hypernym/hyponym

1 Arthroscopy refers to a surgery on a joint using an arthroscope.
2 http://khnt.aksis.uib.no/icame/manuals/brown/
3 Wordnet is a widely-used free semantic dictionary organized in a hierarchical manner [21]
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Fig. 1: Terms “complication”, “infection” and “practice” as positioned inside the lexical

hierarchy Wordnet, shown in darker boxes together with their minimal common subsumers.

The box with three dots represents 5 unimportant terms in the hierarchy.

relations. In this work we use Wordnet to obtain the lowest common subsumer ms in Equa-

tion 1. The lowest common subsumer for two synsets is simply the lowest synset in the

Wordnet hierarchy which is a hypernym for both of them.

Let us see an example of using both external knowledge sources and the Lin similarity

measure, to calculate semantic similarity between terms. In Figure 1, the terms “complica-

tion”, “infection” and “practice” are shown along with their least common subsumers “ill

health” and “abstraction” (darken boxes), as found in WordNet. The number under each

term is the probability of appearance of that term in the Brown corpus. One may observe

that actually the term “complication” is very close to the term “infection” (the sense of com-

plication defined as: “any disease or disorder that occurs during the course of (or because

of) another disease”). On the other hand, “practice” is very far from the term “complication”

(14 steps in the tree compared to only 4 for “infection”) sharing the least common subsumer

“abstraction” (defined as “a general concept formed by extracting common features from

specific examples”). This is confirmed the Lin similarity value of the two candidate term

pairs: 0.59 for the “complication-infection” and only 0.062 for the “complication-practice”

term pair, which leads to the selection of “infection” as the term to replace “complication”.

2.2 Formal Concept Analysis and Concept Lattices

In order to present the rationale of our approach, it is essential to first present a brief de-

scription to Formal Concept Analysis (FCA). The basics of FCA are introduced in [12], but

we recall some useful notions for the understanding of the paper.

Data is encoded in a formal context K = (G,M, I), i.e. a binary table where G is a set

of objects, M a set of attributes, and I ⊆ G × M an incidence relation indicating by gIm

that the object g has the attribute m. For A ⊆ G and B ⊆ M , two derivation operators (·)′

are defined as follows:
′ : ℘(G) −→ ℘(M) with A′ = {m ∈ M | ∀g ∈ A, gIm}
′ : ℘(M) −→ ℘(G) with B′ = {g ∈ G | ∀m ∈ B, gIm},
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where ℘(G) and ℘(M) respectively denote the powersets of G and M . The two deriva-

tion operators ′ form a Galois connection4 between ℘(G) and ℘(M) [12]. For a set of objects

A, A′ is the set attributes which are common to all objects in A. Analogously, for a set of

attributes B, B′ is the set of objects having all attributes in B. A formal concept is defined

as a pair (A,B) where A ⊆ G, B ⊆ M , A′ = B and B′ = A, A being the extent and B the

intent of the formal concept (in this case A′′ = A and B′′ = B).

The set B(G,M, I) of all concepts from K is ordered by extent inclusion, denoted by

≤K, i.e. (A1, B1) ≤K (A2, B2) when A1 ⊆ A2 (or dually B2 ⊆ B1). In this case we say

that (A1, B1) is the super-concept of (A2, B2) and inversely, (A2, B2) is the sub-concept of

(A1, B1). The concept lattice of K is denoted by B(G,M, I).

For an object g ∈ G, the object intent is defined as g′ = {m ∈ M |gIm}. Correspond-

ingly, for m ∈ M , the attribute extent is defined as m′ = {g ∈ G|gIm}. For a given object

g, the object concept is defined by γ(g) = (g′′, g′) (where g′′ stands for (g′)′). Dually, for a

given attribute m, the attribute concept is µ(m) = (m′,m′′). Intuitively, the object concept

is the smallest-extent concept in the lattice which includes the object. The attribute concept

is the smallest-intent concept which contains the attribute. An example is given in the legend

of Table 2.

2.3 Foundations of Information Retrieval based on Concept Lattices

2.3.1 The principles of Concept Lattice-based Ranking

The basic idea of current methods, hereby referred to as the CLR family methods [3] (con-

cept lattice-based ranking methods), is that documents in a collection can be organized in a

concept lattice according to the common terms that they share. For example, consider a set

of 9 documents G annotated using a set of 12 terms M in the formal context K = (G,M, I)
illustrated in Table 1 (white rows). The incidence relation set I indicates by gIm that doc-

ument g ∈ G is annotated with term m ∈ M . For this example, let us also assume a user

query qi containing the terms “arthroscopy” and “complication” (from hereafter we refer

to the terms in a query as keywords) to be answered with a subset of documents.

In the CLR family approaches, as in many other information retrieval tasks [17], the

query is considered as a virtual object and it can be included in the formal context as any

other object (Table 1, grey row). Therefore, the original formal context is redefined to in-

clude the query q = (qe, qi), where qe is the virtual object and qi = {m1,m2, ...,m|qi|}

where m1,m2, ...,m|qi| ∈ M contains its keywords (i.e. the constraints associated to the

query) and |.| denotes set cardinality. The formal context is redefined as Kq = (G ∪

{qe},M, I ∪ {(qe,mj)∀mj∈qi}) and its associated concept lattice is computed using a

FCA algorithm. The concept lattice computed for the formal context of Table 1 (including

the query) is illustrated in Figure 2. After constructing the lattice, the standard procedure in

the CLR family approaches is to find the object concept of the virtual object qe. This concept

is usually called the query concept and it is the starting point to find documents satisfying a

query in the lattice [20,19,3].

Let us continue with the above example. The query concept for the query with keywords

qi is concept 17 in the concept lattice illustrated in Figure 2. Its intent contains the terms

“arthroscopy” and “complication”. Its extent contains the virtual object qe and documents

4 A Galois connection is based on a dual adjunction between partially ordered sets.
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d1 × × × × ×
d2 × × × × × × × ×
d3 × × × ×
d4 × × ×
d5 × × ×
d6 × ×
d7 × ×
d8 × × ×
d9 × ×

qe
* × ×

* Grey row represents the query.

Table 1: A term-document formal context including the query q.

Fig. 2: Concept lattice in reduced notation derived from a document-term formal context

including the query. The reduced notation of a lattice consists in labelling the extents/intents

only with the first appearance of an object/attribute from top-to-bottom/bottom-to-top (re-

spectively), i.e. objects are show in their object concepts and attributes in their attribute

concepts (e.g. concept 19 is the object concept of document d8 and concept 15 is the at-

tribute concept of the attribute “complication”).

d2, d7 and d8 which satisfy a conjunctive version of query qi, i.e. these documents include

all of the query keywords. We refer to these documents as the exact answer.
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However, very often documents relevant to the user may fail to meet the restrictions of a

conjunctive query, due to reasons such as language ambiguity (e.g. synonymity or polysemy

of terms), poor document descriptions, the lack of user’s knowledge about how to effectively

pose a question or create a query, etc. This is known as the non-matching document problem

[3], which refers to the fact that documents relevant to the user query may not always exactly

match its keywords and therefore they are not included in the exact answer. To overcome

this issue, it is possible to use the lattice to satisfy disjunctive versions of the query, i.e.

retrieve documents that contain only some of the query terms, by using the super-concepts

of the query concept. For this example, concept 16, a super-concept of 17, contains in its

extent document d6 and in its intent the term “arthroscopy”, while concept 15, also a super-

concept of 17, contains in its extent document d1 and in its intent the term “complication”.

We say that these documents “partially” meet the query and they provide a close or partial

answer.

As it can be observed from Figure 2, each formal concept in the concept lattice contains

a possible conjunctive query and a set of documents which satisfy that query while combina-

tions of formal concepts (in the form of unions) work analogously for disjunctive queries. In

fact, the concept lattice configures the global query space of the document collection, where

the query concept represents the original user query and its super and sub-concepts represent

the immediate modifications that can be performed over the query to find “partial-matching

documents”. Notice that only super-concepts contain different documents than those that

could be found on the query concept, since sub-concept’s extents will always be subsets of

the query concept’s extent. Following the idea of disjunctive queries, apart from the query

concept and its super and sub-concepts, other concepts of the concept lattice may also be

found to include some terms of the query and some new terms, and therefore to also repre-

sent query modifications. Finally, some other concepts of the lattice do not share any terms

with the user query and therefore do not constitute query modifications. It is important to

notice that, given that the lattice forms the global query space of the document collection,

the retrieval of those concepts that represent meaningful query modifications can be con-

sidered as a matter of: 1) navigating the lattice starting from the query concept and then 2)

ranking the retrieved concepts in w.r.t. their relations with the query concept.

2.3.2 Current lattice navigation and ranking approaches

Two main different navigation strategies have been proposed in the literature. The neigh-

bourhood expansion strategy [3] is based on the idea of visiting concepts, in an “expand-

ing ring” order, starting from the query concept. This strategy does not make a distinction

between visiting super or sub-concepts, since in the same ring there may be super and sub-

concepts of the query concept. The hierarchical exploration strategy [19] navigates the lattice

by exploring the super-concepts of the query concept. These super-concepts contain more

documents than those found in the query concept thus allowing to work with a disjunctive

approach.

Both strategies assume a topological distance measure in order to rank the concepts

reached by navigation. In this work, the topological distance in a lattice is defined as the

minimal path length between two given formal concepts (considered as nodes in a graph

[28], see also the nearest neighbour relation in [3]). This notion is straightforward in the

sense that nearer concepts from the query concept are considered “more related” and hence,

they receive a better ranking. However, both strategies differ in that using the neighbourhood

expansion it is possible to reach many more concepts within the lattice than in the case of

hierarchical exploration.
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In terms of query modification, the hierarchical exploration strategy works by modifying

the original conjunctive query to a set of disjunctive queries represented by the intents of the

super-concepts of the query concept. From these super-concepts it is possible to obtain a

set of documents used as an answer for the original query. For example, Figure 3 presents

the section of a lattice containing 4 concepts including a query concept (concept 3 in white)

for the conjunctive query “arthroscopy” and “complication” and “practice” (notice that

in this case the marker qe is on concept 3) using the hierarchical exploration strategy. Both

super-concepts of the query concept (concept 14 and 17) receive the same ranking (they are

both at distance 1 from the query concept) and hence the answer is the union of the extents

of both super-concepts. Actually, this is the answer for the disjunctive query (“arthroscopy”

and “complication”) or (“arthroscopy” and “practice”) or more shortly, “arthroscopy”

and (“complication” or “practice”). In this manner, hierarchical exploration searches in

the query space for relaxed versions of the original query and rank them for how relaxed

they are (notice that the concept 16 ranked at distance 2 answers the very relaxed query

containing only the keyword “arthroscopy”).

The notion of query modification is not explicitly present in the neighbourhood expan-

sion strategy since in the same “ring” of topological distance different types of concepts

are considered and ranked equally. For example, in Figure 4 the same conjunctive query

“arthroscopy” and “complication” and “practice” is represented along with 6 other con-

cepts obtained through neighbourhood expansion. There are 4 “rings” represented by the

topological distances included in arcs between concepts (e.g. ring 1 contains concepts 14

and 17). It can be appreciated that concepts with different intent cardinalities receive the

same ranking since they are in the same “ring” (e.g. concepts 16 and 19 in the ring 2). More-

over, it is difficult to assess the modification in the query represented in ring 4 (concept

20) containing the keyword “infection”. Nevertheless, this characteristic also gives neigh-

bourhood expansion its potential since it is able to find many more documents than the

hierarchical exploration (for example, in hierarchical exploration the concept with the term

“infection” is not a possible query modification and document d1 is never considered as an

answer). As such, there is not an actual notion of query modification, but an idea that closer

concepts in the lattice will contain closer document descriptions and hence, closer relevant

documents.

3 CLAIR - Concept Lattices for Information Retrieval

3.1 Motivation for a new approach for Information Retrieval based on Formal Concept

Analysis

As described in the previous section, the main difference between hierarchical exploration

(HE) and neighbourhood expansion (NE) strategies is how the notion of query modification

is applied. Since HE is based on a clear query relaxation process where documents are

ranked according to how much relaxed is the query they satisfy (w.r.t. the original query),

we can expect that the answers it provides, compared to those obtained from NE, are of

better quality in terms of relevant documents. On the other hand, since NE is based on a

continuous expansion of the lattice region used to retrieve documents, we can expect that

the answers it provides contains a larger quantity of relevant documents compared to the

answers provided by HE (along with a larger quantity of irrelevant documents).

The trade-off between quality and quantity in document retrieval systems has always

been an active issue in the IR domain, mainly reflected by the two most common retrieval
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16

{qe, d2, d6, d7, d8, d9}
×

{Arthroscopy}
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Fig. 3: Section of a lattice showing 4 concepts obtained by hierarchical exploration. Arrows

represent the navigation direction with their correspondent topological distance from the

query concept of query “arthroscopy”, “complication” and “practice” (represented in white).

20

{d1, d8, d9}
×

{Infection}

16

{qe, d2, d6, d7, d8, d9}
×

{Arthroscopy}

21

{d8, d9}
×

{Arthroscopy

Infection}

17

{qe, d2, d7, d8}
×

{Arthroscopy

Complication}

14

{qe, d2, d6}
×

{Arthroscopy

Practice}

19

{d8}
×

{Arthroscopy

Complication

Infection}

3

{qe, d2}
×

{Arthroscopy

Complication

Practice}

1
1

2
234

3
2

Fig. 4: Section of a lattice showing 7 concepts obtained by neighbourhood expansion. Ar-

rows represent the navigation direction with their correspondent topological distance from

the query concept of query “arthroscopy”, “complication” and “practice” (represented in

white).

evaluation measures: precision and recall [17] (further described in Section 4.2). Further-

more, it is hard to compare a system with high quality in the answers versus one with high

quantity of answers since, in many cases, this depends on the application intended for the

system. For example, a beginner student will not be interested in all documents related to

a given field but only on those more relevant (interest focus on quality), while an expert

will be more interested on monitoring the field trying to find as many documents as he can

(interest focus on quantity). Nevertheless, it is accepted that a good retrieval system should

have a good quality/quantity balance which is our goal in this work. To achieve this, we
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take lessons from HE and NE strategies considering a careful design in the evaluation of the

query modification process (ranking) but also considering an expansion to concepts other

than those in the super-hierarchy of the query concept (navigation). These two elements

are reflected by two of the three aspects of our work, namely classification, navigation and

ranking. Regarding navigation, we define a new relation for two given concepts within the

lattice which we call cousin concepts. Regarding ranking, we consider a semantic-based

formal concept similarity measure introduced in [11]. In the following, we describe and de-

tail the three main aspects of our approach called CLAIR (Concept Lattices for Information

Retrieval).

3.2 The principles of CLAIR

Our approach, hereby referred to as CLAIR, focuses on the following three aspects.

1. Classification: In this work, classification is used with two meanings, namely the op-

eration of classification and the product of this operation which is also called “classi-

fication”. Firstly, we use FCA for building a concept lattice which is considered as a

semantic index for document retrieval (the concept lattice as a result of a classification

operation). Then, given a user query, we rely on the principle of classification-based

reasoning for inserting the query in the lattice and identifying concepts that provide

possible answers to the query (the classification operation applied to the query). This

method of query insertion differs from the one used in the CLR family approaches. In

CLAIR, as detailed previously, the query concept is not appended to the lattice through

an incremental FCA algorithm (e.g. Galois in the case of CLR [2]), but it is classified

by the lattice through classification-based reasoning.

2. Navigation: We propose a new navigation strategy of the concept lattice which is tai-

lored to the needs of the ranking method proposed using a semantic similarity measure.

Navigation is here used in the same sense as in CLR-like approaches, i.e. the identifi-

cation of relevant concepts given an initial query concept. Our navigation approach is

based on the notion of cousin concepts. The rationale behind the use of cousin concepts

is that in order to identify additional, partial-matching documents we need to modify the

original user query but in a manner that the query and the modified query are closely

related. We achieve this by the generalization of the query concept in the concept lattice

to its super-concepts (which we call query generators) and their posterior specialization

to what we call cousin concepts of the query concept (i.e. the sub-concepts of the query

generators). Since query generators are immediate super-concepts of the query concept,

cousin concepts retain some keywords (more precisely, those in the query generators)

while including some other terms. For example, consider the query concept with intent

{m1,m2} and its query generator with intent {m1}. Through the specialization of the

query generator we can obtain the concepts with intents {m1,m3} and {m1,m4} which

are considered as modifications of the original query (i.e. replacing m2 with m3 or m4,

respectively).

3. Ranking: Since many cousin concepts (or query modifications) can be obtained from

the concept lattice for a single query concept, there is a need to evaluate how close are

these modifications from the original query. For the previous example the question is

whether we should replace m2 with m3 or with m4. We answer this by measuring the

semantic similarity of the terms included in the intent of each retrieved concept w.r.t. the

keywords. In this way, we also address the problem of retrieving documents related to

the user query in a semantical way, rather than only based on topological characteristics
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of the concept lattice. We use a measure introduced in [11] which considers external

knowledge sources to evaluate “semantic closeness”.

3.3 The implementation of CLAIR as a Knowledge Discovery in Databases process

Following the rationale described above, here we describe the proposed CLAIR approach

for document retrieval, which considers classification, navigation and ranking based on the

notions of classification-based reasoning, query modification and semantic similarity, re-

spectively. We formulate our approach following the lines of a knowledge discovery in

databases (KDD) process [1] which allows us to define well differentiated tasks and pro-

vides us with a robust framework to implement the document retrieval process (Figure 5).

In particular, our process is defined as a sequential three steps KDD-like process to reflect

the three aspects of our work (classification, navigation and ranking). The first step of our

approach is “Document Classification”, related to the data pre-filtering step of a KDD pro-

cess. The second step is knowledge “Lattice Navigation” related to the mining/knowledge

discovery KDD-process step. The last step of our process is “Concept Ranking”, related to

the interpretation KDD-process step.

Data (Documents as bag-of-words, user query)

↓
Step 1 - Document Classification

‘ ↓ Term normalization, integration and cleaning

↓ Creation of the formal context

↓ Query Space Creation

Step 2 - Concept Lattice Navigation

↓ Query insertion through classification-based reasoning

↓ Cousin concept search

Step 3 - Formal Concept Ranking

↓ Concept interpretation using semantic resources

↓ Ranking of cousin concepts

Retrieved documents (for the given user query)

Fig. 5: 3-step KDD-like document retrieval process.

3.4 Step 1 - Document Classification

In this step we construct a formal context K = (G,M, I) as defined in Section 2.3 consisting

of a set of documents G, a set of terms M and the annotations expressed in the incidence

relation table as pairs (g,m) ∈ I where g ∈ G and m ∈ M . Depending on the nature of

the collection of documents, different tasks should be performed in order to construct the

formal context (e.g. parsing, tokenizing, stop-word filtering etc. [18]). In order to simplify

and standardize the approach, we assume that the documents in the collection are in the

form of a bag-of-words (i.e. each document consists of a set of terms). We argue that this is
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a safe assumption since most of document corpora are already provided in this format and

in the other case, the transformation of text to bag-of-words is a straightforward process.

Additionally, a normalization of the terms is required in order to reduce sparsity and inte-

grate the representation of documents. Three basic natural language analysis techniques can

be used [18]. Stemming is a technique that normalizes a set of words to their morphological

root (e.g retrieval, retrieves, retrieve are normalized to retriev). Thus, it greatly reduces the

sparsity and the number of attributes in the context, however it does not maintain the orig-

inal meaning of the terms (e.g. retriev is not an actual word). To maintain the meaning of

the terms it is possible to use a semantic element mapping which normalizes a set of words

to a semantic element definition using an external knowledge source (e.g. recover, retrieve,

find, regain are mapped to the definition “Get or find back; recover the use of”)5. This tech-

nique reduces sparsity but produces an explosion in the number of attributes in the context,

since each term can be mapped to more than one definition (e.g. recover maps to 4 different

definitions). Finally, through the use of lemmatization it is possible to normalize a set of

inflected forms of a word (e.g. retrieval, retrieves, retrieve are normalized to retrieve). Thus,

it slightly reduces the sparsity of annotations and the number of attributes in the context,

while maintaining the original meaning of the terms.

Given the complexity of calculating a concept lattice and the fact that we need to main-

tain the original meaning of the terms in order to measure their in-between semantic simi-

larity, we normalize document terms using the technique of word lemmatization.

Finally, a concept lattice representing the query space is created based on the document-

term formal context obtained from the previous step. Different algorithms exist to compute

a set of formal concepts from a formal context and to build a concept lattice [15]. For this

work, we rely on the AddIntent algorithm [30] because of its performance.

3.5 Step 2 - Concept Lattice Navigation

The second step corresponds to navigating the constructed “document index” or “query

space”6 in order to retrieve documents for a given user query. For convenience, we propose

a model-based document retrieval approach, i.e. the document index is built a-priori and not

for each given user query like in usual CLR-like approaches (described in Section 2.3). This

is done given the complexity of building a concept lattice from a formal context of significant

size. Instead, in our approach the concept lattice is constructed once and the query is simply

inserted in the lattice when required.

3.5.1 Query insertion through classification-based reasoning

This sub-step assumes the existence of the concept lattice and a user query in the form of

a set of keywords. Its output is a query concept and set of related formal concepts which

are used to retrieve a set of documents. A user query q is considered as a query concept

q = (qe, qi) where qe is a “dummy variable” to be instantiated by retrieved documents and

qi = {m1,m2, ...,m|qi|} is a set of keywords.

The query concept is not “inserted” in the lattice, but rather “classified” by it using

classification-based reasoning as introduced in [22]. Classification-based reasoning is based

5 Dictionary definition of the first sense of recover given by Wordnet.
6 Notice that “document index” or “query space” are both a dual view of the same concept lattice from

the point of view of extents or intents, respectively. Here after we refer equally to “document index”, “query

space”, “concept lattice” or “semantic index”.
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1 function compare (q, C)

2 if C is marked

3 then return {}
4 else mark C

5 if C does not subsume q

6 then return {}
7 else MSS ← {}
8 for every descendant D of C do

9 MSS ← MSS ∪ compare (D, q)

10 if MSS = {}
11 then return {C}
12 else return MSS

Fig. 6: Classification-based Reasoning algorithm: Searching for the most specific subsumers

of q: comparison of the current object C with q.

on a depth-first traversal of the lattice and consists in, given a query concept q, searching for

the most specific subsumers (MSS) and the most general subsumees (MGS) of q. Actually,

the search for the most general subsumees here is useless. The search for the most specific

subsumers is illustrated in the algorithm in Figure 6 and works as follows. The classification-

based reasoning algorithm receives a concept to classify q and a MSS candidate concept C

(line 1). C is firstly checked for if it was previously visited and if not, then it is marked

(lines 2-4). This is done to ensure that concepts are visited only once. A subsumption test is

performed for checking whether C subsumes q, where the subsumption test relies on intent

inclusion: C subsumes q as long as the intent of C is included in the intent on q (line 5). If

C does not subsume q, the sub-lattice rooted in C is cut and no more considered (line 6). If

C subsumes q, a recursive call of the classification-based reasoning algorithm is called over

the sub-lattice rooted in C (line 7-9). The traversal continues with the first descendant of

C and so on in the same way. The traversal ends when there are no more concepts to visit

and returns the set MSS of most specific subsumers. In the case that no MSS were found in

the sub-lattice of C, then C becomes a MSS (lines 10-12) In the present case, these most

specific subsumers are called query generators.

In case there exists in the lattice a formal concept (A,B) such as B = {m1,m2, ...,m|qi|},

then the algorithm identifies (A,B) as the query concept, and those documents in A consti-

tute the exact answer. The existence of an exact answer is not always guaranteed, especially

for large and complex queries. The worst case scenario appears when no query generators

are found except for the top concept of the lattice (which includes all the documents and no

terms). Actually, this can only be the case if no keyword provided by the user can be found

in the query space and in this case, the query is considered to be unsuccessful.

As we have previously described, in a concept lattice, for a user query represented by

a query concept, query generators represent “relaxed versions” of the original user query,

i.e. they include less keywords than the query intent. Any other sub-concept of a query

generator –except the query concept– induces a modified user query, since it includes a part

of the query determined by the query generator, plus a set of terms that are not contained in

the original query. Based on this observation, we introduce a navigation strategy allowing to

find “successful modifications” of an original user query, i.e. they do include answers, which

are closely related one to the other. In order to find and reuse these query modifications, we

define hereafter the notion of cousin concepts.
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3.5.2 Cousin Concept Definition:

Two formal concepts (A1, B1) and (A2, B2) which are not comparable for ≤K are said to

be cousin concepts iff there exists (A3, B3) 6= ⊤ such that:

– (A1, B1) ≤K (A3, B3).
– (A2, B2) ≤K (A3, B3).
– dK((A2, B2), (A3, B3)) = 1 and dK((A1, B1), (A3, B3)) = 1.

where ⊤ is the top concept and dK measures the “topological distance” between two for-

mal concepts in the lattice K. The distance dK is analogous to the “minimal path length” for

two nodes in a graph as defined in [28]. Intuitively, this means that (A1, B1) and (A2, B2) do

not subsume each other and that (A3, B3) is the upper bound (A1, B1)⊔(A2, B2). Actually,

(A3, B3) represents a query generator of queries (A1, B1) and (A2, B2). This also means

that the query in (A1, B1) is considered as a modification of the query in (A2, B2) and vice

versa. We restrict query generators not to be the top concept, since the empty query can be

considered as the generator of the whole query space. For example, in Figure 2, concept 18

is a cousin of 17 because of concept 15, concept 6 is a cousin of 13 because of concept 12

and so on. However, concept 10 is not a cousin concept of 12 since that would mean that the

query generator should be concept 4 which is the top.

For a given query and its query concept, the querying process aims at traversing the

lattice to extract all its cousin concepts (Ai, Bi). For simplicity reasons we have restricted

the cousin concepts to be at a topological distance 2 from each other. This restriction can be

relaxed in order to increase the number of documents retrieved by the process if necessary.

As an example of the above-described lattice navigation strategy, consider Figure 7,

which contains part of the lattice in Figure 2. Specifically, Figure 7 displays concepts 14,

16, 17 and 21, where concept 17 (in white) represents the query concept for the query with

keywords “arthroscopy” and “complication”. Its extent contains the exact answer, i.e. docu-

ments d7 and d8. Concept 8 contains in its intent only “arthroscopy”and provides a relaxed

version of the original query and works as a query generator. From this concept we can ob-

tain the cousin concepts of concept 17, i.e. concepts 14 and 21. These provide two different

query modifications where the term “complication” in the original query is replaced with

the terms “practice” or “infection”, allowing to choose whether document d2 and d6 or doc-

ument d9 should be ranked first. The decision on the ranking of the retrieved concepts, and

the documents that they include is a matter of interpretation of the results and it is described

in the following step.

3.6 Step 3 - Formal Concept Ranking

Given the query concept and its cousin concepts, the output of a concept ranking process is

a sorted list of documents retrieved to the user. As we recall from the previous step, a cousin

concept represents both a query modification (in its intent) and a set of documents that sat-

isfy that modification (its extent). In this step we interpret these query modifications in the

sense of semantic similarity w.r.t. the original user query considering that those modifica-

tions which deviates less from the original query (and hence, are more similar) should yield

documents more relevant. To achieve this, we use a semantic similarity measure defined for

two formal concepts within a concept lattice.
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16

{d2, d6, d7, d8, d9}
×

{Arthroscopy}

14

{d2, d6}
×

{Arthroscopy, Practice}

17

{d7, d8}
×

{Arthroscopy,

Complication}

21

{d8, d9}
×

{Arthroscopy, Infection}

Fig. 7: Example of lattice navigation. Starting from the query concept (17) we navigate to

its cousin concepts (14,21) and retrieve documents d2, d6 and d9. Concepts are shown with

their extents and intents. Arrows show the direction of the navigation inside the lattice.

3.6.1 Computing the similarity between concepts

In our framework, the ranking of the candidate concepts is performed using the semantic

similarity metric proposed by Formica [11]. Given two formal concepts C1 = (A1, B1) and

C2 = (A2, B2) the similarity between C1 and C2 is defined as:

sim(C1, C2) =
|A1 ∩A2|

max(|A1|, |A2|)
∗ w +

M(B1, B2)

max(|B1|, |B2|)
∗ (1− w) (2)

where 0 ≤ w ≤ 1 is a weighting parameter and M(B1, B2) is the maximization of

the sum of the information content similarities between each possible pair of terms created

using one term from B1 and another from B2. Information content similarity between two

terms is measured using their distance in a lexical hierarchy and/or their co-occurrence in a

text corpus (see Section 2.1).

As an example of how concept ranking is performed using Formica’s similarity, let us

consider Figure 7. Given the query concept 17, we navigate the lattice and find two cousin

concepts, i.e. concept 14 (containing documents d2 and d6) and 21 (containing document

d9). We need to rank these concepts, in order to decide the order in which the retrieved

documents will be presented to the user. In order to do so, we compare the similarity of each

of the cousin concepts, to the query concept, using Formica’s semantic similarity metric

defined in Equation 1 with w = 0.5, Wordnet as the external lexical hierarchy and the

Brown corpus as the body of text to locate term frequencies. We observe that sim(17, 21) =
0.6137, while sim(17, 14) = 0.225, because the pair (complication, infection) has a higher

semantic relation than the pair (complication, practice), as explained in Section 2.1, and

the intersection between concept 17 and 14 is empty, while for 17 and 21 the intersection

contains one element. Therefore, we may rank and retrieve document d9 before documents

d6 and d2. Differentiations in the weight value w allow for differentiation in the preference

between the structural (from the extents) and the semantic (from the intents) similarities of

the compared concepts.
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4 Experimental Evaluation

To test the capabilities of our approach, we applied it on four datasets of the SMART col-

lection7 which is a well known benchmark collection used in text mining and retrieval. Each

dataset is provided as a collection of documents from different domains. Additionally, a list

of queries (in different formats) is given for each dataset. A query has an associated set of

valid answers, i.e. documents that have been labelled by human experts to answer this query.

4.1 Experimental setting

All datasets are preprocessed by parsing, stop word removal and lemmatization using the

natural language toolkit (NLTK) library8 for Python. Table 2 details each dataset in terms

of the number of document, terms, annotations (the number of document-term relations),

formal context density (#annotations / (#documents × #terms)) and the number of queries

with provided answers used in the experiments.

For each dataset a formal context containing all documents and lemmatized terms is cre-

ated and a concept lattice is derived from it using an AddIntent algorithm implementation

[30]. Preprocessed datasets are stored in a relational database for further operations. Con-

cept lattices were modelled as directed graphs using the networkX library9 for handling large

graphs. Each received query is processed to construct a bag-of-words using its lemmatized

keywords. A query concept is created including all the lemmatized keywords in its intent

and an empty extent. Using classification-based reasoning we look for the query generators

of the query concept. To compute Formica’s similarity, the query concept extent is consid-

ered as including the union of the extents of all its query generators. This heuristic greatly

improves the performance of the posterior ranking in the four datasets used. We provide

a further explanation in the following discussion. The sub-concepts of the query genera-

tors (cousin concepts) are ranked using Formica’s similarity measure described in Section

3. Finally, a list of sorted documents is created using the extent of the cousin concepts. A

document is only inserted in the list once, from the cousin concept with the highest rank.

The order of the documents inserted in the list from the same cousin concept is disregarded.

Name #documents #terms #annotations Ctx. density # queries

CISI 1460 8169 68827 0.05% 30

CACM 3204 7466 67502 0.2% 53

MED 1033 11207 57370 0.4% 26

CRAN 1398 5964 77743 0.9% 100

Table 2: Dataset characteristics

In order to compare the results of our approach, we have implemented three retrieval

methods, namely exact matching, BM25 and CLR which work directly on the databases

yielded from the preprocessed dataset. The exact matching (EM) method is a naive approach

which searches the database for documents with at least one keyword provided in the query.

Additionally, documents are ranked according to how many terms they have in common

7 ftp://ftp.cs.cornell.edu/pub/smart/
8 http://nltk.org
9 http://networkx.github.com
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w.r.t. the query. Documents with more terms in common are ranked first. The BM25 func-

tion [17] (also known as Okapi BM25) uses a probabilistic approach to rank documents

considering collection size and document length normalization. Each document is scored

w.r.t. the query using a modified and parametric version of term-frequency and inverse-

document-frequency (TF.IDF). BM25 is within the BM (Best Match) family of retrieval

methods that are less restrictive than EM methods. CLR (concept lattice-based ranking) is a

standard lattice-based approach presented in [3] and explained in Section 2.3.

4.2 Evaluation measures

In the following, we provide a description of the evaluation measures used in this work as

described in [17]. Precision and Recall are measures to assess the relevance of documents

answered by a retrieval system. Formally, given a query q, we define precision and recall

in Equations 3 and 4 (respectively) where the set retrieved contains all documents found

for q and the set relevant contains the documents which constitute the actual answer for q

(ground truth). The set positive = |retrieved ∩ relevant| represents the correct subset of

the retrieved documents for query q.

precision(retrieved) =
|positive|

|retrieved|
(3)

recall(retrieved) =
|positive|

|relevant|
(4)

The relevant set (or “ground truth”) is usually constructed by a single or a group of

domain experts which are able to distinguish within the document collection which are the

relevant documents for a given query (sometimes checking documents one by one). Having

the ground truth, the calculation of precision and recall is straightforward. For example,

consider the query with keywords “arthroscopy” and “complication” answered by CLAIR

with documents shown in list 1 at Table 3 as to be the retrieved set (example illustrated in

Figure 7). The relevant set is defined in list 2 at the same Table. From this we obtain that

CLAIR is able to retrieve 3 out 4 documents that domain experts considered relevant and as

such, our query was answered with a recall of 0.75. However, along with those 3 relevant

documents, our system also found 2 documents not considered by domain experts which are

regarded as mistakes. Hence, our system finds 3 correct documents out of 5 which yields a

precision of 0.6.

List Set Name Documents Precision Recall

1 Ground Truth d4, d6, d7, d9 - -

2 System answer d2, d6, d7, d8, d9 0.6 0.75

3 Low Quality/High Quantity d1, d2, d3, d4, d5, d6, d7, d8, d9 0.44 1

4 High Quality/Low Quantity 7 1 0.25

5 System answer (ranked) d7, d8, d9, d2, d6 0.6 0.75

Table 3: Examples of precision and recall

In a nutshell, precision measures the proportion of correct answers among the answers

found by a retrieval system. Hence, precision takes into consideration also the incorrect an-

swers of the system. On the other hand, recall measures the proportion of correct documents
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Row Document Relevant? Precision Recall

1 d7 X 1 0.25

2 d8 ✗ 0.5 0.25

3 d9 X 0.66 0.5

4 d2 ✗ 0.5 0.5

5 d6 X 0.6 0.75

Table 4: Values of precision and recall calculated considering the first 1,2,3,4 and 5 ranked

elements in list 5 at Table 3. Precision and recall are calculated with a list which considers

all previous documents in decreasing order of ranking (for example, precision and recall in

the third row were calculated for documents d7, d8 and d9. Columns “Relevant?” shows if

the document in the corresponding ranking is relevant (in list 1 at Table 3).)

over the whole collection of correct answers for a given query and does not consider incor-

rect answers. Precision and recall are often considered as a trade-off between the quality and

the quantity of the answers where a high quality is achieved with a high precision value, and

a high quantity of answers is achieved with a high recall value. Actually, a high recall value

for a given user query can be easily achieved by retrieving the whole set of documents in the

collection. However, this comes at the cost of a low precision (low quality/high quantity).

For example, consider in Table 3 list number 3 with recall of 1 and precision of 0.44. In-

versely, it is easy to achieve a high precision by retrieving a few documents which are likely

to be correct at the cost of a low recall (high quality/low quantity). In Table 3, this is the

case of list 4 with precision of 1, but recall of 0.25.

As discussed in Section 3.1, it is well accepted that a good retrieval system should main-

tain a balance between quality and quantity (precision and recall), however if we want to

compare CLAIR w.r.t. other systems, we need something more robust to draw conclusions.

Another aspect of precision and recall is that they do not take into consideration the docu-

ment ranking in the answer of a retrieval system. For example, consider in Table 3 lists 2 and

5 (not ranked and ranked, respectively) which have the same values of precision and recall.

Thus, we not only need an evaluation for the answers but also for the ranking applied to the

answers.

Regarding these drawbacks, some other evaluation measures have been proposed con-

sidering precision and recall in the context of ranking. Table 4 shows the ranked answer in

list 5 at Table 3 where precision and recall were calculated considering only the first 1, 2, 3,

4 and 5 documents of the ranking. We can appreciate that different values of precision are

obtained depending on how many documents are considered in the answer (usually, because

of the quality/quantity trade-off, the tendency is that as more documents are considered, less

precision is achieved).

In the following, we define the evaluation measures for a ranking process considered in

this work. These measures are used as standard IR evaluation techniques and their rationale

is out of the scope of this article [17].

Considering the precision and recall values in Table 4, we define the interpolated pre-

cision at a recall interval as the maximum value of precision for a given interval of recall.

For example, the interpolated precision at the recall interval [0.5, 1] is the maximum among

0.66, 0.5, 0.6 (for rows 3,4 and 5 in Table 4, respectively), and hence is 0.66. Similarly, the

interpolated precision in the recall interval [0, 0.5] is 1. The interpolated average precision

(IAP) is the mean of the interpolated precisions for all recall intervals. In this example, is

the mean of the interpolated precisions for [0, 0.5] and [0.5, 1] and hence, it is 0.83. For
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two intervals, we say 2-point interpolated average precision or IAP@2. The usual approach

considers 11 intervals and it is called 11-point interpolated average precision or IAP@11.

Analogous to IAP, we calculate the mean average precision (MAP) which is the mean

of the precision values in Table 4 where the column “Relevant?” is marked as correct (X).

This is, it only considers the precision values where the last document of the list (dx) is a

relevant document10. The MAP in this example is the average of the precision values of rows

1,3 and 5 which is 0.753.

To formalize these measures, let us define the set rank = {d1, d2, ..., dn} as the set

of documents answered by a retrieval system for a given query sorted by ranking in a de-

scending manner . We define rankdx ⊆ rank as a sub-list of rank which contains from the

first element until element dx ∈ rank. Equation 5 is the interpolated precision in a given

interval defined by the edges r1 and r2. Equation 6 defines the 11-point interpolated average

precision and Equation 7 describes the mean average precision as used in this work.

ip(r1, r2) = argmax
∀dx∈rank

{precision(rankdx) ⇐⇒ recall(rankdx) ∈ [r1, r2[} (5)

IAP@11 =

∑10
i=0 ip(

i
10 ,

(i+1)
10 )

11
(6)

MAP =

∑
∀x∈positive precision(rank

x)

|positive|
(7)

(8)

Finally, in this work we also provide the precision calculated in the first five documents

of the ranking or P@5. This is not a measure that evaluates the ranking, but it gives an insight

on the practicability of the approach, given that users tend to evaluate the retrieved set of

documents by the relevance of the few first elements in the ranking. In the case of Table 4,

the P@5 is given by the precision on list 5 and it is 0.6.

4.3 Results

Table 5 shows the results for 3 measures, namely interpolated average precision at 11-points

(IAP@11), mean average precision (MAP) and precision in the first 5 ranked documents

(P@5) on the four datasets and the four approaches. Values in boldface indicate the best

value obtained for an approach for each dataset. From these results it can be appreciated that

CLAIR surpasses the other three approaches with a score of CLAIR: 8, CLR: 1, EM: 3 and

BM25: 1 (the tie for P@5 in the CRAN dataset is considered as a point for CLR and EM).

CLAIR always win in the values of IAP and MAP which are actually the measures that

consider document positions and same precision/recall conditions, whereas it never wins in

the precision in the first five ranked documents.

This can be explained by the manner used by CLAIR to rank documents according to

the semantic similarity among the terms shared by a subset of documents and the terms in a

query. A subset of documents may have a few terms in common w.r.t. the query, but several

similar terms which will rank them high in the retrieved list compared with documents with

more terms in common w.r.t. the query but a few similar terms. It seems that having more

10 To be strictly correct, this is called the “average precision” (AP), while MAP is the mean of AP over a

set of queries. Since we are presenting all of our results averaged over a set of queries, in this work we refer

to AP as MAP.
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terms in common w.r.t. the query is more important than having more similar terms. On the

other hand, most of the documents do not have many terms in common w.r.t. the query. This

means that approaches like EM and BM25 are very good at ranking a few documents (those

that have more terms in common with the user query) and bad at ranking many documents

where their discriminatory power is low (those that have more similar terms rather than the

same terms in common with the user query). The discriminatory power of CLAIR does not

decrease in this manner making it robust w.r.t. documents with different terms than those of

the query, mainly by the use of semantic similarity among terms.

This is further supported by Figures 8 which present the interpolated precision at 11

different recall points. It can be seen that, with exception of the CRAN dataset, EM always

has a best value in the first point 0.0, while CLAIR quickly surpass EM (and the other

approaches) for the rest of the recall points.

Dataset MED CACM

Approach CLAIR CLR EM BM25 CLAIR CLR EM BM25

IAP@11 0,5451 0,4619 0,5116 0,5015 0,2756 0,1504 0,2135 0,0848

MAP 0,5029 0,402 0,4686 0,4804 0,2524 0,1697 0,1939 0,0724

P@5 0,48 0,336 0,5524 0,5714 0,1608 0,0769 0,2154 0,1038

Dataset CISI CRAN

Approach CLAIR CLR EM BM25 CLAIR CLR EM BM25

IAP@11 0,3527 0,2978 0,17 0,1762 0,0279 0,0199 0,0154 0,0181

MAP 0,3234 0,259 0,1444 0,1499 0,0262 0,0181 0,013 0,0159

P@5 0,2303 0,1886 0,28 0,2571 0,0122 0,0043 0,0043 0,0106

Table 5: Measures for each domain and each approach.

Finally, regarding the use of Formica’s similarity, in these experiments we did not seek

for an optimal value of w since our goal was to show the feasibility of our approach and to

prove that better or similar results could be obtained with CLAIR compared to standard IR

techniques. Nevertheless, it is worth mentioning that for most of the queries (specially the

large ones), the query concept extent is empty, i.e. it is very hard that a document contains

exactly all the terms provided in the user query. In these cases the left (additive) term of

Formica’s similarity is not informative (equal to 0). To avoid this, we use the heuristic of

considering the query concept extent as containing the union of all its query generators’

extents. This has shown to greatly improve the results in all the four datasets used in the

experiments.

4.4 Query analysis

In the following we present a brief analysis for some queries of the CISI dataset in order to

provide a deeper understanding on the how CLAIR is able to obtain better results than the

rest of the approaches and describe further improvements for the approach.

The sunny case of query 6: Query 6 contains the terms communication, verbal, possi-

bility, word, computer and human, however it is only mapped to one relevant document (out

of 1460). Our approach is able to find 30 documents in the query generators shown in Table

6.

These three query generators led us to 35 different cousin concepts (query modifications)

from which the top 10 in the ranking are shown in Table 7 where the query concept is also
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Fig. 8: 11-point interpolated precision for each dataset
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ID Intent

G6.1 word, computer, human

G6.2 computer, communication

G6.3 possibility, human

Table 6: Query generators for query 6.

Formica Sim Intent Extent support

1 communication, verbal, possibility, word, computer, human * 0

0.637 word, computer, human, information 4

0.634 machine, word, experiment, based, computer, human, text 3

0.603 research, word, computer, human 3

0.602 index, word, computer, human 3

0.595 word, computer, make, human 3

0.493 concept, possibility, human, analysis 3

0.484 computer, form, communication 4

0.470 possibility, human, information 3

0.470 computer, information, communication 15

0.449 computer, part, communication 4

* Grey row represents the query concept.

Table 7: Ranked results for query 6.

illustrated in grey. The concept with the highest similarity to the query concept (second row)

contains in its extent 4 documents including the only correct answer for the query. In this

case, the query modification is created by replacing the term communication (in the sense

of “Something that is communicated by or to or between people or groups”) by the term

information (in the sense of “A message received and understood”). Thus, thanks to the

search through cousin concepts, the system is able to find this unique relevant document

showing the capabilities of our approach.

The infamous case of query 8: The case of query 8, consisting of the terms language,

indexing, information, retrieval and science, is of special interest since we are able to find

76 different query modifications with very high similarity values w.r.t. the original query

(shown in Table 9) leading us to 31 documents which include none of the possible 18 correct

answers.

The problem is due to the fact that the query generators (in Table 8) do not contain any

correct answers making any possible query modification useless. One possible way to over-

come this issue corresponds to the inclusion of more documents by relaxing the definition of

cousin concepts allowing query generators to be at a distance 2 of the query concept, how-

ever this induces an explosion on the query modifications obtained from the lattice (from 76

to 504) and a consequent lower performance of the document retrieval process.

ID Intent

G8.1 language, information, retrieval, indexing

G8.2 science, information, retrieval, indexing

G8.3 science, language, information, indexing

Table 8: Query generators for query 8.
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Formica Sim Intent Extent cardinality

1 language, indexing, information, retrieval, science * 0

0.987 science, word, information, retrieval, indexing 2

0.977 subject, language, information, retrieval, indexing 5

0.977 language, field, information, retrieval, indexing 5

0.972 science, information, term, retrieval, indexing 4

0.959 science, subject, information, retrieval, indexing 4

0.936 method, language, information, retrieval, indexing 7

0.927 method, science, information, retrieval, indexing 4

0.926 system, language, information, retrieval, indexing 13

0.921 science, research, information, retrieval, indexing 4

0.916 concept, language, information, retrieval, indexing 3

* Grey row represents the query concept.

Table 9: Ranked results for query 8.

Finding more documents: As stated above, it is possible to increase the recall of our

approach (the number of relevant documents retrieved over the total number of relevant

documents) by relaxing the definition of cousin concepts allowing the query generators to

be at distances farther than 1 from the query concept. However, this comes with a great cost

in terms of computation since the number of query modifications obtained from the query

space (the concept lattice) which should be compared to the query concept will greatly

increase. It also impacts negatively the precision of the answers (the number of relevant

documents retrieved over the total amount of documents retrieved).

Applicability: It is worth mentioning the applicability of our approach given the lim-

itations in the computation of a concept lattice. With the state-of-the-art FCA algorithms,

it is uncertain that CLAIR may be applied in document collections such as the entire Web

or even some subsets of it proposed as standard datasets for testing IR tasks11. Indeed, the

applicability of CLAIR is restricted to smaller datasets, usually personal data collections

where the number of documents is not larger than 100.000 documents, such as personal

picture collections, research references, mail archives, music albums, etc. These datasets

share three characteristics: they are real-life datasets, they are numerous since mostly any

person creates several of them; and more importantly, there is a real necessity to improve

the performance of searching within them.

5 Related Literature

Formal concept analysis (FCA [12]) is a data representation, organization and management

technique with applications in many fields of information science, ranging from knowledge

representation and discovery to logic and description logics [27]. In the past years, FCA

has been applied to document indexation (an Information Retrieval task [17]) since it pro-

poses a robust and formal framework to exploit the relations that documents (objects) have

through the terms they share (attributes). The capabilities of FCA in the standard IR model

are numerous and range from query representation and expansion, document browsing and

ranking to faceted navigation and visualization [29]. For example, the work of Priss [26]

uses concept lattices to improve the representation of a document collection by merging

11 The TReC competition provides several datasets for different IR tasks. Some of them contain billions of

documents. http://trec.nist.gov/
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it with information from thesauri and thus creating a multi-faceted extended context. In a

similar approach, the work of Carpineto et al. [5] presents CREDO, a system that queries

Google to construct a faceted browser from a concept lattice to help the user on its search

experience.

Apart from browsing support and automatic facet construction, some approaches use the

concept lattice directly as a document index and propose different strategies to navigate it in

order to find those documents relevant for a given user query. In general, given a document-

term concept lattice and a conjunctive user query, these approaches work by identifying a

formal concept in the lattice that best represents the query. Other than the approaches based

on hierarchical exploration [20] and neighbourhood expansion [3] deeply described in Sec-

tion 2.3, several systems have been proposed for the exploitation of concepts lattices for IR.

For example, in [9], the author presents the system Camelis as a logical information sys-

tem for the organization, indexation and retrieval of different types of documents. Camelis

allows searching using metadata elements of documents as their attributes in a “logical con-

text”. The tool also supports browsing, navigation and the inclusion of external information

sources as automatic face recognition on images.

In [6], the authors present SearchSleuth as a document organization and search sys-

tem using a concept lattice built from the results obtained from a Web search engine (like

CREDO, but with Yahoo instead of Google). It is based on three different techniques,

namely generalization, specialization and categorization. The later is based on looking for

the sibling concepts of the query concept which, as cousin concepts are direct sub-concepts

of the direct super-concepts of the query concept, with the additional restriction that they

also should be direct super-concepts of the direct sub-concepts of the query concept. In

this approach, concept’s rank is calculated through the average of the Jaccard similarity be-

tween the extents and the intents of the query concept and its siblings concepts (as in [20]).

It is worth mentioning that Formica’s similarity is also based in the Jaccard similarity of

the extents but it uses an optimization approach to find the best semantically similar terms

within the intents of two concepts. Semantics are not considered in SearchSleuth, nor in its

predecessor ImageSleuth [7].

Other systems worth mentioning are FooCA [13], which presents the user with a formal

context of documents and terms obtained from a Web search engine. The user manually fil-

ters and manages the formal context to obtain a concept lattice for navigation and browsing

in a posterior step. CreChainDo [23] is presented as a concept lattice-based IR system de-

signed to support explicit relevance feedback from users. In this case, the user is presented

with the intent of the query concept and he can manually add or remove terms (relevance

feedback) which in turns allows him to navigate the lattice or to recalculate it (in the case he

adds a terms which is not in the lattice).

A thorough study on the incidence of information retrieval focused articles in the domain

of formal concept analysis can be found in [25]. To the authors knowledge, this is the first

work engaged in the use of semantics on a FCA-based IR system. An exception worth men-

tioning would be the extension of Camelis (called Camelis 2 or Sewelis [10]) which deals

with faceted search and SPARQL12. While we refer to “semantics” as the actual meaning of

terms, “semantics” in the “semantic web” are given by a collection of “semantic definitions”

called “ontologies” or “meta-schemas’ and hence, they are not the same (ironically, in this

case the term “semantics” also has different semantics). Finally, this extension of Camelis

is based on the definition of a language to query RDF13 graphs instead of lattices.

12 SPARQL is the query language definition for linked data in the semantic web domain.
13 Resource Description Framework
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6 Conclusions

In this paper we present a concept lattice-based for information retrieval approach (CLAIR)

to support semantic indexing and document retrieval. We define our approach as a knowl-

edge discovery in databases-like (KDD-like) process involving the formal concept analysis

framework (FCA).

The proposed process uses the concept lattice, constructed from a document-term for-

mal context, as the semantic index of the document collection. Given a user query, it applies

a classification-based reasoning algorithm to insert into the lattice a new formal concept

corresponding to the query (the query concept) and to find a set of query generators corre-

sponding to disjunctive versions of the query. The concept lattice is thus considered as the

query space for the document collection, where each formal concept is a possible query and

consequently, the query generators are used to obtain modifications of the original query.

These modifications are used to find partial-matching documents. The navigation from the

original query concept to the concepts containing the modified queries is achieved using the

notion of cousin concepts, which is another original aspect of this work. Finally, external

knowledge sources are used to measure the “semantic closeness” of the query modifications

with the original user query.

We validate the feasibility and capabilities of our approach by applying it on four clas-

sical datasets used in information retrieval and by comparing it to three different IR tech-

niques. We discuss the flexibility of the proposed process, which allows the improvement of

the recall of the answers by changing one single parameter of the navigation strategy.

There are several directions for future investigations. The first one is related to the im-

provement of the performance of the approach, using parallelization and computer clusters.

Algorithmic adaptations are then needed. This will also allow to draw some comparisons

with different methods used in the information retrieval field, as well as to experiment with

different datasets. A second one is related to the data structure. Mining complex datasets

rather than binary formal contexts allows us to consider weighted document × term tables

and a more sophisticated document indexing. In this way, we are planning to adopt the use

of pattern structures [14] to improve the present approach. Finally, the present approach

could also be coupled with more numerical approaches for semantic retrieval, such as latent

semantic analysis [8]. It could be interesting to study and build the basis for such a hybrid

semantic retrieval approach.
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