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We introduce the problem of Task Assignment and Sequencing (TAS), which models online optimization in
expert crowdsourcing settings that involve non-decomposable macrotasks. Non-decomposition is a property
of certain types of complex problems, like the formulation of an R&D approach or the definition of a research
methodology, which cannot be handled through the “divide and conquer” approach typically used in micro-
task crowdsourcing. In contrast to splitting the macrotask to multiple microtasks and allocating them to
several workers in parallel, our model supports the sequential improvement of the macrotask one worker at
a time, across distinct time slots of a given timeline, until a sufficient quality level is achieved. Our model as-
sumes an online environment where expert workers are available only at specific time slots and worker/task
arrivals are not known a priori. With respect to this setting, we propose TAS-ONLINE, an online algorithm
that aims to complete as many tasks as possible within budget, required quality and a given timeline, with-
out any future input information regarding job release dates or worker availabilities. Experimental results
comparing TAS-ONLINE to five benchmarks show that it achieves more completed jobs, lower flow times and
higher job quality. This work bears practical implications for providing performance and quality guarantees
to expert crowdsourcing platforms that wish to integrate non-decomposable macrotasks into their offered
services.
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1. INTRODUCTION
As the appeal of crowd work increases, there is a growing need to provide support for
more complex tasks, such as document drafting, product design, social innovation and
idea development. Indicative of the interest that such tasks attract is their increasing
inclusion to traditional crowd work platforms, such as CrowdFlower (see the recently
launched CrowdFlower Labs1), but also the proliferation of dedicated platforms, such

1http://www.crowdflower.com/blog/introducing-crowdflower-labs
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as upWork2 and crowdSpring3. This type of crowdsourcing is often referred to as expert
crowdsourcing [Retelny et al. 2014], and the tasks that it involves are referred to as
macrotasks [Cheng et al. 2015; Haas et al. 2015]. Macrotasks differ from the typically
crowdsourced microtasks in that they often require expert skills, assume varying de-
grees of knowledge over a topic, may take more worker time and often involve worker
collaboration, i.e. workers building on each other’s intellectual contributions.

The current trend in crowd-powered applications research is to process macro-
tasks using a “divide and conquer” approach: macrotasks are decomposed to smaller
(microtask-level) units, parallelized (to multiple workers) and then recomposed (to
form the final answer from the separate smaller subtasks). Examples include, cap-
tioning partial snippets of speech and then merging them into a single output stream
[Lasecki et al. 2012], categorizing individual items into a small number of categories
and then merging these categorizations to create taxonomies [Chilton et al. 2013], or
aggregating multiple word or sentence-level translations to form a larger corpus [Am-
bati et al. 2012; Zaidan and Callison-Burch 2011]. Although often very effective [Tee-
van et al. 2016], this is a costly process as it requires the intervention of experts to
define – through tailor-made workflows – how the macrotask should be broken into
smaller chunks of work, which dependencies exist among these chunks and how these
can be recomposed once complete [Kim et al. 2014; Chan et al. 2016]. The necessity for
expert involvement in the workflow design has been proven even in cases where the
crowd was considered, in an effort to lower costs [Kittur et al. 2011; Kulkarni et al.
2012]. Further, breaking a macrotask to smaller work units is feasible for some but
not all types of macrotasks: borrowing from organizational literature many R&D prob-
lems are non-decomposable [Felin and Zenger 2014] meaning that they cannot be bro-
ken down to smaller sub-problems, which can be solved in parallel. For such tasks no
crowdsourcing optimization model exists to-date; current literature suggests that they
can only be solved in-house and manually instead of posting them even to specialized
crowd platforms like Innocentive [Sieg et al. 2010]. Finally, since different macrotasks
have different needs and serve different purposes, making a one-size-fits-all workflow
for task decomposition, parallelization and decomposition is difficult, inevitably ren-
dering the macro-to-micro task logic less generalizable.

In this work we pose the question: what if decomposition is not the only way to han-
dle complex crowd work? With this in mind we propose a new crowd work model, one
that assumes non-decomposable macrotasks that get iteratively improved one worker at
a time until a sufficient quality level is achieved. Our model is not based on worker par-
allelization but on worker sequencing across time slots. A given worker takes a lock on
a given macrotask for the duration of time (slot) that this is assigned to him/her. When
time is up, the task is assessed against a quality threshold. In case this threshold is not
reached, the next worker is selected, takes a lock and works on the task. Paralleliza-
tion in our model happens at the level of the task batch, with multiple workers owning
and working on different macrotasks during the same time slot. Optimization shifts
from single-slot assignment decisions (“which workers should work on which task?”) to
multiple-slot assignment and sequencing ones (“which worker should work on which
task and on which time slot?”). By sequencing assignment decisions and not assuming
specific task splitting and dependencies, our model becomes more easily generalizable.

This shift distinguishes our model from previous works. Recent studies in expert
crowdsourcing optimization [Basu Roy et al. 2015; Goel et al. 2014] typically seek to
find multiple worker assignments per task such that the worker contributions add up
to a required quality threshold within a given budget. The assignments all take place

2https://www.upwork.com/
3http://www.crowdspring.com/
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in the same, single time slot. This model comes with two shortcomings. First, it is not
applicable in cases where the task (or the part of the task that we are interested in)
is non-decomposable. Second, it does not inherently handle time-dependent elements
such as the availability constraints of the expert workers at different time periods,
or the time-differentiated task arrivals, unless a lookahead mechanism has been put
in place. In fact the assumption of a unique time slot often leads to the adoption of
an offline setting, according to which the optimization algorithm can access the com-
plete expected task and worker input, and use it to compute an index of pre-calculated
assignments. In a realistic crowdsourcing setting however, worker/task arrivals and
departures may vary across the timeline in an unpredictable manner. Handling non-
decomposable tasks across an unpredictable timeline thus raises the need to solve
not only the assignment part of the worker allocation problem (finding which worker
should take which task), but also the sequencing part (identifying when each worker
should contribute). It also raises the need for online algorithms, which can make effi-
cient decisions having access only to information that is available until their decision
point, and revisit these decisions frequently to adapt to changes in the worker/task
availability, rather than algorithms that use pre-calculated assignments.

In this paper we introduce the problem of crowdsourcing Task Assignment and Se-
quencing (TAS), which shifts the crowdsourcing optimization model from single-slot
parallel assignments to multiple-slot sequencing ones (Figure 1). The main question
that TAS evokes is: Which worker-to-task assignments are the best (assignment prob-
lem) and how can we optimally roll them out in a realistic timeline (sequencing prob-
lem), featuring unknown task release dates and worker availabilities?

To the best of our knowledge, this is the first work that addresses the problem of
assignment and sequencing optimization for expert non-decomposable crowdsourcing
macrotasks. Overall, our three main contributions with this paper are:

— We propose a new crowd work optimization model, which makes a conceptual shift
from task decomposition and worker parallelization to task non-decomposition and
worker sequencing. In contrast to current models that assume multiple workers per
task on a single time slot, our model is based on the idea of a single worker-per-task-
per-time-slot rolled across multiple slots. Our model combines assignment decisions
(per time slot and across tasks) with sequencing decisions (rolling out these assign-
ments along a timeline) under reasonable constraints. We call this problem model
TAS and prove its strong NP hardness.

— We propose an online algorithm, TAS-ONLINE, which operates on this new model
and seeks to complete as many jobs as possible within budget, required quality and
given timeline. At each time slot, the algorithm computes a feasible matching of
workers to tasks for the next slot, without any future input information regard-
ing job release dates or worker availabilities. This results in feasible sequences of
workers per task up to the present time slot.

— We illustrate, through simulated and real-world experiments, that TAS-ONLINE can
achieve more completed jobs, lower flow times and higher quality compared to five
typical benchmarks.

The rest of this paper is organized as follows. In section 2 we recapitulate the related
literature on crowdsourcing optimization, distinguishing between works that focus on
decomposable tasks and works that indicate the need for non-decomposable ones. In
section 3 we describe the characteristics of the expert crowdsourcing setting that this
work applies to. We also illustrate, through a mathematically formulated toy example,
why sequencing across time slots matters in this particular setting. In this section
we also formally model the TAS problem and prove its strong NP-hardness. Next, in
section 4 we describe the proposed online algorithm (TAS-ONLINE) for the solution
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of the TAS problem. In section 5, we present and discuss the experimental results,
obtained on both simulated and real-world data. These results compare TAS-ONLINE
with five benchmarks found in the literature, and show that TAS-ONLINE achieves
higher numbers of completed jobs (both in terms of absolute value and as a percentage
of the solution’s upper bound), lower flow times (the time between a job’s release date
and the latest assignment on that job), better budget utilization and higher levels of
quality, comparable only to the respective TAS-OFFLINE version for certain of the above
measures. Finally, we discuss possible extensions of the TAS model and algorithm
(section 6) and end with the paper’s main findings and conclusions (section 7).

released completed

Non-decomposable 
macrotasks

timeline

worker assignments

time slot

idlej0

j2

j1

j3

Fig. 1. TAS problem model overview. TAS is based on online, non-decomposable, heterogeneous macrotasks,
each of which is iteratively improved one worker at a time. TAS combines two optimization sub-problems: i)
assignment (which worker to assign to which macrotask per time slot) and ii) sequencing (how to dynami-
cally roll these per-slot assignments across a realistic timeline).

2. RELATED WORK
2.1. Crowdsourcing Optimization
Crowdsourcing optimization is a term used in various problem settings, including opti-
mizing the selection of worker labor channels to improve performance [Karanam et al.
2014], discovering the optimal worker wage [Horton and Chilton 2010], determining
the optimal number of workers to undertake each task so as to maximize quality and
minimize cost (a method referred to as plurality optimization that is applicable on n-
ary tasks with an objective true value) [Mo et al. 2013], optimizing the worker queue
size [Bernstein et al. 2012; Bernstein et al. 2011], determining the optimal task pricing
to incentivize the crowd’s timely responses [Faradani et al. 2011; Minder et al. 2012;
Nath et al. 2012; Rajan et al. 2013; Biswas et al. 2015], or identifying the optimal set of
tasks to forward to the crowd (for systems like database query execution that are based
partially on crowdsourcing and partially on automated methods) [Fan et al. 2015].

The family of optimization problems that our work falls into is allocation optimiza-
tion, i.e. the identification of which worker should work on which task and when, in
order to optimize one or more global performance metrics, which usually include cost,
quality and number of acceptable tasks. This family of problems consists of two distinct
optimization problems, assignment and sequencing. The assignment problem trans-
lates to solving which worker should be given which task. The sequencing problem
adds the existence of a timeline, and translates to solving when the worker will be
given the task.

Current studies, which mostly assume a decomposable task model, focus on the as-
signment part, i.e. on selecting the optimal set of workers that will work in parallel on
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the task. When timeline is taken into account, this serves to predict future worker be-
havior and thus improve the selection of the best assignment, rather than to define the
specific time slots that the workers will undertake the task. Below we first review the
literature on decomposable task optimization, and then go through the studies that
stress out the need to also account for non-decomposable tasks.

2.2. Decomposable Tasks
2.2.1. Optimizing Task Assignments. Karger et al. [2011] are among the first to exam-

ine assignment optimization in crowdsourcing. Working with homogeneous microtasks
(that all have the same level of difficulty and do no distinguish among task topics), they
propose a matching algorithm inspired by the standard belief propagation algorithm
for approximating max marginals, which is order-optimal and minimizes cost. This
study is also among the first to show that the problem of task matching in crowd-
sourcing can be transformed to a bipartite graph design problem, where workers are
one part of the graph, tasks are the other and the edges represent possible assign-
ments of workers to tasks. Ho et al. [2012] work with heterogeneous microtasks of n-
ary classification quality on a model where worker skills per microtask are unknown.
They propose a two phase exploration-exploitation assignment algorithm that seeks
to maximize the total benefit of the requester and is competitive with respect to its
counterpart of known worker skills. Yuen et al. [2012a; 2012b; 2011] propose a matrix
factorization approach that utilizes the workers’ task performance and search history
to derive their preferences and perform an improved task-to-worker matching. Finally,
Bragg et al. [2014] highlight the need for sustaining worker engagement and propose a
parallel task routing algorithm that makes assignments to all available workers in the
platform for a near-optimal use of the available crowd workforce. Working with macro-
tasks divisible to independent subtask level, Goel et al. [2014] and Roy et al. [2015;
2014] both propose task-to-worker assignment optimizations (the first using a mech-
anism design-based approach and the second through an index-based approach) on
models that consider heterogeneous macrotasks and where the optimization goal is to
maximize the utility of the requester while ensuring budget feasibility. Yue et al. [2015]
add to this model the element of team instead of individual worker assignments, and
propose a heuristic genetic algorithm that optimizes for task budget and quality, tak-
ing into account worker pay expectations, skills and availability.

The difference of these works with ours, which also renders the optimization algo-
rithms that they propose not directly applicable on our setting, is that they model
one-time parallel and not multiple-slot sequential assignments.

2.2.2. Considering the Timeline. Further to pure cost/quality assignments, certain works
consider the existence of a timeline with varying worker/task arrivals and departures.
When included in the model, the timeline serves to learn the time-dependent behavior
of the workers and select the task assignments that increase the probability of the task
finishing on time. Sequencing workers across the timeline is not optimized for, since
the decomposable task model still requires only one-time assignments. In this context,
Boutsis and Kalogeraki [2014] propose a multi-objective optimization approach that
searches for Pareto-optimal solutions, seeking to identify the group of workers (among
multiple candidate groups) with the highest probability of finishing the task promptly.
Khazankin et al. [2012] propose a mathematical optimization approach that learns the
task selection behavior of workers and then executes tasks in a manner that optimizes
for cost (but not quality) and considers deadlines. Among the few works that split the
timeline into distinct time slots is the study by Yu et al. [2013]. This study optimizes
the number of tasks to recommend to each worker per time unit with the objective of
maximizing average number of successful (i.e. of acceptable quality) jobs for a given
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time period. Their model assumes binary microtasks and a pull-and-filter task selec-
tion model (where workers select which tasks they want to work on and the system
filters these selections according to its optimization objective) and performs task allo-
cation on the basis of worker accuracy measured in a [0,1] scale using a heuristic algo-
rithm of linearithmic complexity. Although the model of this study does include time
slots, it is different than ours in that it assumes homogeneous tasks of binary quality
rather than heterogeneous tasks of continuous quality. The use of homogeneous tasks
(all tasks have the same difficulty, no distinction of task topics) means that optimiza-
tion needs to be performed in terms of the number of jobs per worker, rather in terms
of allocating specific workers to specific jobs according to their skills.

The difference of the above works with ours is on the role of the timeline. When the
task is decomposable and multiple workers can be assigned on it at the same time slot,
like in the above works, time serves to select the best assignment, i.e. the set of workers
that (on top of fulfilling cost and quality requirements) can finish the task as fast as
possible or according to future time demands, based on a lookahead mechanism. When
the task is non-decomposable, like in our model, the timeline can be used to divide
time into distinct slots (each with a fixed and limited horizon), and select the best
sequencing of workers who can fulfill the cost and quality requirements across these
slots and before the timeline ends.

2.3. Non-Decomposable Tasks
2.3.1. Current Usage in Crowdsourcing. Apart from decomposable tasks, which form the

majority of current crowdsourcing optimization models, very recent works have started
to indicate the need for non-decomposable tasks. In this context, Kim et al. [2016] ar-
gue that certain types of complex creative tasks, like for example story writing, cannot
be easily split into independent tasks because of the many interdependencies and the
need to maintain the global context. Consequently they propose a sequential workflow
that is based on iterative reflection and high-level revisions of the work, and show
that it can be an effective complement to existing parallel crowdsourcing techniques.
In the same spirit, Parameswaran et al. [2016] indicate that open-ended crowdsourc-
ing problems, where there is a need to incorporate multiple viewpoints and find the
common ground, are the “next frontier” in crowdsourcing research. They also indicate
that such problems need to be treated as single open-ended crowdsourcing tasks, since
decomposing them to “boolean crowdsourcing” microtasks would mean losing informa-
tion related to the problem’s broader context. Finally, Little et al. [2010] also provide
early support that certain open-ended tasks, like writing, profit the most from iterative
sequential rather than parallel workflows. Despite acknowledging the need for sequen-
tiality in handling non-decomposable crowdsourcing tasks, no work to-date examines
the optimization of such a model.

2.3.2. Positioning Non-Decomposable Tasks Within a Broader Task Model Taxonomy. To un-
derstand better the nature of non-decomposable tasks, and the reasons that mandate
their handling according to a sequential assignment model, it is important to first po-
sition them with respect to other crowdsourcing task types and the problems that each
type can solve. Drawing from organizational management literature and adapted to
the crowdsourcing landscape, Table I classifies crowdsourcing tasks according to the
problem attributes they can solve.

According to Nickerson and Zenger [2004], technological knowledge problems can
be categorized based on two attributes: complexity and decomposability. Complexity
measures the number of relevant knowledge domains and the intensity of their in-
teractions for the technological problem under consideration. A simple problem in-
volves very few knowledge domains and the degree of interdependencies among them
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Table I. Taxonomy of crowdsourcing task models according to the problem attributes they can
handle. Each row is a task model. Our proposed task model is highlighted.

Attributes of problem to solve

Crowdsourcing task
example

Complex Decomposable Well-structured

Microtasks Data categorization,
curation, enrichment

8 8

Macrotasks
Taxonomy creation,
itinerary planning,
educational material
development

8 8 8

“Holy grail”, wicked
problem solving

8

Define a research
methodology, formu-
late an R&D approach,
refine system design

8 8

is low. Conversely, a complex problem involves a large number of relevant knowledge
domains, with a high in-between degree of interactions. Decomposability measures the
extent to which the problem under consideration can be divided into sub-problems. A
decomposable problem can be divided into sub-problems each drawing on rather spe-
cialized and distinct knowledge sets so that it can be solved independently. Conversely,
a non-decomposable problem cannot be subdivided as the interactions among knowl-
edge domains are so extensive that it is virtually impractical to define sub-problems.
For such a problem if a solution is to be found it has to be an overall solution. Huang
and Holden [2016], add a third important problem attribute, which is structure. A well-
structured problem is one with clear boundaries of relevant knowledge domains, the in-
teractions among which can be thoroughly understood; consequently there are explicit
and widely accepted approaches to solve the problem. Conversely, in ill-structured
problems, the boundary of relevant knowledge domains is ambiguous and the inter-
actions among them are poorly understood; thus no consensus approach can solve the
problem.

This classification allows us to position the problems that current crowdsourcing ap-
proaches solve, the problems that the model proposed in this paper intends to solve,
and the problems for which it is not suitable. Microtasks like data categorization, cu-
ration, or enrichment [Kittur et al. 2008; Musthag and Ganesan 2013], which form the
focus of most commercial crowdsourcing applications, are intended to solve problems
that are non-complex, well-structured and decomposable. Macrotasks are almost al-
ways complex, in that they require multiple interconnected knowledge domains, and
they may be either decomposable or non-decomposable (e.g. open-ended work can be
decomposable or not), well- or ill-structured. The macrotasks that current crowdsourc-
ing literature typically works on [Retelny et al. 2014] are complex, decomposable and
well-structured. Examples include: creating a taxonomy [Chilton et al. 2013], planning
an itinerary [Zhang et al. 2012], editing and correcting a document [Bernstein et al.
2010] or performing information tasks such as personal photography archive organi-
zation [Teevan et al. 2014]. The problems that this work is intended to handle are
also complex and well-structured but they are non-decomposable. Examples include
defining a research methodology or formulating an R&D approach. In general, these
are problems often found at the beginning of an innovation project (when the broad
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objectives and solution criteria need to be set) and they are currently only processed
manually, even if the rest of the project can be crowdsourced [Sieg et al. 2010]. These
problems can profit from a “continuity of useful action” [Altshuller 2005] where each
consecutive contributor maintains the global context and full semantic overview of the
problem while iteratively refining it. Another example is drafting documents related to
continuous process improvement [Anand et al. 2009], or to the refinement of a system’s
design until an acceptable solution is found, both of which necessitate the authors to
maintain the overall context in making their contribution.

In the rest of this paper we adopt the term macrotask to describe complex work, which
is not necessarily decomposable, but which is aligned with the original macrotask def-
initions in that it: requires more worker time (as in [Cheng et al. 2015; Haas et al.
2015]), can accept free-form (i.e. of continuous quality) worker inputs, and its quality
can be determined through subjective evaluation, for example peer review (as in [Haas
et al. 2015]).

Finally, our model is not suitable for ill-structured tasks, for which the interactions
among the relevant knowledge domains (or even the exact required knowledge do-
mains themselves), are not well understood. Such problems are also referred to as
“holy grail” or “wicked” problems. Ill-structured problems are better served by open
innovation idea contests [Majchrzak and Malhotra 2013], like Innovation Jam’s dis-
cussion forums or Lego Mindstorms, where the purpose is to collect as many ideas as
possible in search for the few breakthrough ideas, rather than an iterative idea devel-
opment. Processing ill-structured complex tasks with our model’s sequential process
could lead to problems such as fixation with one solution [Jansson and Smith 1991] or
solution confounding [Little et al. 2010].

Summarizing, crowdsourcing optimization studies have so far extensively studied
the assignment, but not the sequencing aspect of the problem. This focus is to be ex-
pected, given their underlying assumption for tasks that can be decomposed to in-
dependent subtasks and processed in parallel by multiple workers. However, when
decomposition is no longer an option, we need to split the timeline and sequence the
assignments optimally across it in. In this work we address the problem of optimal
task sequencing for non-decomposable, online, heterogeneous macrotasks. In the next
section we will elaborate on the type of problems where non-decomposable tasks are
necessary and how their optimization can have a significant impact on many contem-
porary platforms and applications.

3. TASK ASSIGNMENT AND SEQUENCING (TAS)
In this section we first describe from a high-level viewpoint the expert crowdsourcing
setting that we target in this work (section 3.1). Then we provide an example to illus-
trate the importance of adding the timeline sequencing element into the above setting
(section 3.2). Next we define the TAS problem model, in terms of the input data, fea-
sible solutions, constraints and optimization goal (section 3.3). Finally we analyze this
problem model in terms of complexity (section 3.4).

3.1. Expert Crowdsourcing Setting
The expert crowdsourcing problem setting, at which this work is aimed, features some
very particular characteristics that make it unique compared to other crowdsourcing
settings:

(1) Heterogeneous rather than homogeneous task pool. We work with a crowdsourcing
task pool that requires different skills and skill levels from the workers, and it
includes multiple topics or knowledge domains (rather than a single one). Workers
in this setting possess a set of skills, and are less replaceable and less abundant
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than crowdsourcing settings that consider homogeneous tasks and skills (where
everyone can accomplish every task).

(2) Non-decomposable rather than decomposable tasks. Whereas decomposable tasks
can be split to the level of independent subtasks and given simultaneously to mul-
tiple workers in a single assignment, non-decomposable tasks cannot be split and
need to be processed in sequential assignments (one worker after the other).

(3) Online rather than offline. Rather than working on an offline setting, where the pool
of workers and/or tasks are known a priori, we consider an online setting, where
workers demonstrate a dynamic flow of arrivals and departures and tasks arrive
in an unpredictable manner. Any sequencing decision must be made based on the
task/worker information available up to the specific point in time.

3.1.1. Use Case. As an illustrative use case of a system where our model could be ap-
plied, imagine a corporate network of experts, in-house or across industries. The task
that we will use is R&D problem and approach definition, which includes the formal-
ization of a problem’s scope, the outline of the research and development approach
to be followed, the outline of the business plan etc. In essence, this task is a docu-
ment that describes the needs of the innovation client and the scope and methodology
of the R&D work to follow, and usually cannot be decomposed because the authors
need at this stage to maintain the full overview of dependencies across the affected
areas (research, development, business etc.) and the ability to change them. The def-
inition of such a document typically takes place at the early stages of an innovation
project, through iterative refinement cycles and with the participation of a few man-
ually selected in-house experts. The correct and complete definition of this task is the
backbone of any innovation project. Currently, such tasks cannot be crowdsourced, and
their completeness relies on the in-house experts that can be found at the time of the
task’s definition [Sieg et al. 2010]. Only after the above task has been defined, the
innovation process can move to production stages, which can be crowdsourced because
they consist of separate chunks of work (e.g. code development).

For our use case imagine a collaborative document writing platform, similar to a cor-
porate wiki (albeit one with individual-person locks per article as we will see below).
A person (innovation client) adds an article with a draft first description of the R&D
problem that needs to be elaborated, and this article corresponds to a task in the ter-
minology of our model. The innovation client also adds the task’s knowledge domain
and a quality threshold (e.g. in a scale from 0-10). Quality in this case can denotes the
level of completeness of the R&D problem description, and the quality of the outline of
the solution approach. Multiple metrics of quality can be used depending on the par-
ticular case and on what the R&D document describes, but for the sake of this use case
we will assume that they can be merged to a single numerical quality value.

As soon as the task is inserted in the system, the TAS algorithm searches for an
expert worker, with an availability to undertake the task. Experts in this setting can
denote their availability in advance, for example in days (time slots in our model) and
for the time period of the coming month (the timeline). Denoting availabilities can be
important since expertise in an innovation setting is a scarce resource: the experts can
be professionals with demanding work schedules and less easy to replace than amateur
workers in typical microtasking crowdsourcing settings. The selected expert works on
the task, completing the definition of the R&D approach, filling missing points and
enriching the document with his/her viewpoint and expertise.

At the end of the day the article is locked and its quality is assessed. Note that in
the scope of the present work we view the quality assessment mechanism as a black
box, in order to focus on the assignment and sequencing problem. In practice, task
quality assessment can be implemented using a peer review process, with reviewers
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from the same expert worker network. Further, note that in our paper we consider
the expertise of each worker as a known numerical value. In practice expertise can
be calculated from the contribution history of each expert, i.e. the ratings that his/her
work has received in the past through the same peer review process on other tasks
of the same knowledge domain. Using these ratings, expertise can be calculated as
the average added quality that the worker’s contributions have given to articles of the
same domain in a single time step. A description of the above mechanisms can be found
in [Lykourentzou et al. 2010].

If the task quality is below the defined threshold, the algorithm selects another ex-
pert who will work on the task, contributing his/her expertise to improve the article’s
quality. Some workers with high expertise (e.g. 9 in a scale of 10) can improve the doc-
ument substantially. Other workers, with lower expertise (e.g. 0.5 in a scale of 10) can
only make minimal additional improvements (e.g. making a more strict formulation
of an existing R&D hypothesis). This process, according to which expertise is accumu-
lated to improve the innovation document iteration after iteration, corresponds to the
additive quality model used in the objective function later on in our paper.

3.2. The Importance of Worker Sequencing Over Time Slots
Before giving the formal definition of the TAS optimization problem, we illustrate
through an example the importance of looking at multiple timeslots, and how this
addition has an important effect on expert crowdsourcing performance.

Example. Suppose there are only two jobs given, both from the same knowledge
domain. Each job j = (Q,C) has a quality threshold Q that needs to be reached, and a
cost threshold C that must not be exceeded. For this example suppose

j0 = (5, 5) and j1 = (4, 4).

On the other hand, each worker i = (e, w) has an expertise e that increases the quality
of a job additively, and a required wage w that consumes this job’s budget. Let us
assume that three workers

i0 = (2, 3), i1 = (3, 2) and i2 = (2, 1)

are given. Then each job has two possible assignments within budget and with suffi-
cient quality:

j0 : {i0, i1} or {i1, i2}
j1 : {i0, i2} or {i1, i2}

For both jobs the second assignment seems to be preferable over the first since workers
{i1, i2} provide more quality (= sum of the expertise of the assigned workers) for less
cost. Now we look at a sequencing period of three timeslots and assume that only one
worker may work on a job and at most one job is assigned to each worker per times-
lot. Moreover, workers have limited availabilities as follows (both jobs are released
immediately):

timeslot 0 1 2
i0 ×
i1 ×
i2 × ×

Since worker i1 is available only at a single timeslot it is clear that at most one job can
realize its preferable assignment mentioned above. So assume for the moment that we
choose modestly j0 ← {i0, i1} for j0. This gives us the following partial schedule for the
workers:
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timeslot 0 1 2
i0 j0
i1 j0
i2 × ×

But now none of the two feasible assignments for j1 can be realized since only worker
i2 remains available. Although the assignment j1 ← {i2} is within budget, it does not
reach the needed quality, and j1 remains incomplete in this case.

So let us choose the alternative assignment j0 ← {i1, i2} and set i2 on j0 at timeslot
0:

timeslot 0 1 2
i0 ×
i1 j0
i2 j0 ×

Now j1 cannot be completed without violating the sequential working assumption (i.e.
that a job is processed by a sequence of workers and one worker at a time, as detailed
by the Sequentiality model property in section 3.3) with regard to this job. On the other
hand, if we set i2 on j0 at timeslot 2, we can complete both jobs with the schedule

timeslot 0 1 2
i0 j1
i1 j0
i2 j1 j0

without violating any constraints. To complete the discussion, note that if we choose
j1 ← {i1, i2} in the beginning, then j0 cannot be completed no matter which timeslot is
used for i2 (end of example).

This example shows that not only the choice of an optimal worker-task assignment
without consideration of time may be misleading, but also that the specific selection of
timeslots is important.

3.3. The TAS Problem Model
With the following definition we want to capture the interplay between task assign-
ment and timeline sequencing within the same model, and add the appropriate con-
straints. We refer to this problem model as TASK ASSIGNMENT AND SEQUENCING
(TAS) in expert crowdsourcing.

3.3.1. Input Data. Scheduling period. Suppose we look at t timeslots [t] = {0, 1, . . . , t −
1}. Each timeslot d ∈ [t] is also called a day but it can be any fixed period of time.

Knowledge domains. A finite set K of knowledge domains. Each k ∈ K represents
an area of knowledge or a knowledge topic.

Workers. A finite set U of users, hereby refered to as workers, participating in the
crowdsourcing platform. Each worker i ∈ U has the following characteristics4:

— Expertise. An expertise vector ei of dimension |K|. The expertise eik of a worker
denotes the added quality that the worker can bring to a job belonging to domain k.

— Wage. A cost vector wi of dimension |K|. The amount wik is the monetary remu-
neration that the worker requires in order to perform a job belonging to domain
k.

4Note that in the context of this work the quantification of worker expertise, wage or speed are considered
orthogonal to the studied assignment and sequencing problem. The interested reader is referred to [Lyk-
ourentzou et al. 2010; Dalip et al. 2011; Ipeirotis and Gabrilovich 2014] for available worker profile quan-
tification techniques based on machine-learning, implicit evaluation or information theory.
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— Availability. An availability vector ai of dimension t with entries aid = 1 if worker i
is available on day d, and aid = 0 otherwise.

Jobs. A finite set J of knowledge-intensive jobs that are crowdsourced. A job j is
assumed to have the following characteristics:

— Domain. Each job belongs to exactly one domain kj ∈ K.
— Quality threshold. The amount Qj is the minimum quality that the job needs to

reach.
— Cost threshold. The budget for job j is given by Cj as the maximum total amount of

money that can be paid for the job.
— Release date. Each job has a release date rj ∈ [t] which means that job j enters

the crowd system at timeslot rj (and never leaves the system unless it reaches its
quality threshold or it runs out of budget).

Sequentiality. Finally our model assumes a sequential work mode along the timeline,
according to which workers build on one another’s contributions, at most one worker
can be assigned to a task simultaneously, and each worker contributes to at most a sin-
gle task at a time. Sequentiality is chosen for three reasons. First it is often imposed by
the nature of expert non-decomposable crowdsourcing macrotasks, which do not allow
multiple simultaneous worker contributions. Second, sequentiality allows building on
the task’s quality while not necessitating worker concurrency, which in practice is more
difficult to achieve when specific worker skills (i.e. experts on a topic) are required.
Third, sequentiality allows a more realistic coupling of our approach with worker skill
evaluation mechanisms, making it easier to accurately evaluate the quality that each
worker has brought once they have finished working on a task. Nevertheless, as also
discussed in section 6, an extension of our model to include worker concurrency is also
feasible and can be examined as part of future work.

3.3.2. Feasible Solutions, Constraints and Optimization Goal. A schedule needs to carry in-
formation about the resource allocation for each job in terms of workers and in terms
of time: When does which worker contribute to which job?

Solutions. In a solution for input data x = (t,K,U, J) we have for each job j ∈ J
a vector Uj of dimension t with entries from U ∪ {none}. If Ujd = i then worker i is
assigned to job j and scheduled on day d, and if Ujd = none then there is no worker
assignment for job j on day d.

Note that we represent solutions hereby as job/timeslot-schedules with worker en-
tries, whereas in the previous example we utilized an equivalent worker/timeslot-
representation with job entries. So the successful schedule from the previous example
in the present notation is

U0 = (none, i1, i2)

U1 = (i2, none, i0)

Constraints. A solution is called feasible if and only if the following hold:

(a) No worker is assigned to more than one job at a time, i.e., for all d ∈ [t] and distinct
j, j′ ∈ J it holds that Ujd 6= Uj′d (unless both values are none).

(b) No job is assigned to more than one worker at a time, i.e., for all j ∈ J and d ∈ [t]
there is at most one worker stored in Ujd. This is ensured by the representation of
Uj .

(c) No worker is assigned more than once to the same job, i.e., for all j ∈ J and distinct
d, d′ ∈ [t] it holds that Ujd 6= Ujd′ (unless both values are none).

(d) No worker is scheduled on a day where they are not available, i.e., for all d ∈ [t] and
j ∈ J it holds that if Ujd = i then aid = 1.

ACM Transactions on Social Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



Online Sequencing of Non-Decomposable Macrotasks in Expert Crowdsourcing A:13

(e) No job is processed before its release date, i.e., for all j ∈ J and d < rj it holds that
Ujd = none.

(f) No job exceeds its budget, i.e., for all j ∈ J it holds that cj ≤ Cj where cj is the cost
of job j defined as cj =

∑
i∈Uj

wik if j has domain k.

Note that there always exists a trivial feasible solution with Ujd = none for all j, d.
Objective. In order to assess the quality of a feasible solution y = {j 7→ Uj | j ∈ J}

we determine for each j with domain k the quality of job j with regard to this solution
as qj =

∑
i∈Uj

eik, i.e. using an additive quality model.
Now we set the measure for input x = (t,K,U, J) and solution y to

m(x, y) = |{j ∈ J | qj ≥ Qj}|

which we want to maximize. Therefore we count the number of jobs that reach their
quality threshold within budget and that can be scheduled in a feasible way with re-
gard to constraints (a) to (f). We call such jobs completed.

3.4. TAS: An Allocation Problem With Two Aspects
The TAS optimization problem combines aspects of two well-studied problems of dif-
ferent nature, reflecting resource allocation of workers on one hand, and allocation of
timeslots on the other.

3.4.1. Allocation of Workers: The Multiple Knapsack Perspective. If we look only at worker
allocation in our model, we can understand each job j of domain k with budget Cj as
a knapsack of this size that we need to fill with the worker expertise values eik. Since
the worker availabilities restrict the number of times a single worker can be packed,
we have a bounded version of the MULTIPLE KNAPSACK problem [Kellerer et al. 2013].
The difference from this classical problem is the optimization goal. While in TAS we
want to maximize the number of completed jobs with respect to their individual quality
thresholds Qj , the goal in MULTIPLE KNAPSACK is to maximize the sum of all packed
expertises, no matter how these spread over the different knapsacks.

3.4.2. Allocation of Time Slots: The Openshop Perspective. On the other hand, let us sup-
pose that a worker-task-assignment is already fixed such that all jobs reach their qual-
ity thresholds, and we need to schedule the selected workers along the timeline with
respect to job releases and worker availabilities. We can understand this partial prob-
lem as a machine-scheduling problem: here workers play the role of machines and jobs
need to be processed on these machines. Observe that the order of processing is imma-
terial in our model, that we demand sequentiality, and that the processing time of a job
on a certain machine is either 0 or 1 per timeslot (depending on whether the respective
worker is assigned to this job or not). This aspect of TAS is a UNITTIME OPENSHOP
problem with limited machine-availability and job release-dates [Kravchenko 2000].
Note that the adoption of this model also implies non-preemption, i.e. a worker cannot
be interrupted once they have started working on a task. The goal of maximizing the
number of completed jobs translates to minimizing the number of late jobs if we set t
as the global deadline (which also marks the end of the timeline). Note also that the
sequencing of an already fixed worker-task-assignment can be reduced to the BIPAR-
TITE LIST EDGE-COLORING problem [Even et al. 1975]. Here jobs and workers form a
bipartite graph, where the worker-task-assignments are the graph’s edges and times-
lots are represented by colors. Subsequently we assign a list of colors to each edge
(j, i) such that worker i is available on these timeslots and job j is already released.
A proper coloring of all edges can be found if and only if the previously fixed worker-
task-assignment can be sequenced on the timeline.
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3.4.3. TAS Complexity. Both aspects of TAS described above are NP-hard on their own,
and so is TAS as we illustrate below. For an upper complexity bound, note that the
length of TAS-solutions is polynomially bounded in the input length and that the
constraints can be checked in polynomial time if a solution is given, so TAS is an
NP-optimization problem. Moreover, we observe that TAS is a large number problem,
since it has KNAPSACK as a subproblem (if there is only a single job and each worker is
available on a different single day). So it is reasonable to consider strong NP-hardness.

THEOREM 3.1. TAS is a strongly NP-hard optimization problem.

PROOF. We show NP-hardness with a polynomial-time many-one reduction from
the NP-complete problem 3-DIMENSIONAL MATCHING [Karp 1972]. For finite, disjoint
sets X, Y and Z we say that M ⊆ X × Y × Z is a 3-dimensional matching if for all
distinct triples (x1, y1, z1), (x2, y2, z2) ∈ M it holds that x1 6= x2, y1 6= y2 and z1 6= z2.
It is known that 3-DIMENSIONAL MATCHING is NP-complete even in the special case
when |X| = |Y | = |Z| = u and M has to be a perfect matching with |M | = u.

3-DIMENSIONAL MATCHING (3-DM)
Input: Finite and disjoint sets X,Y, Z with |X| = |Y | = |Z| and a

subset W ⊆ X × Y × Z.
Question: Is there a perfect 3-dimensional matching M ⊆W ?

Suppose an instance of 3-DM is given with X = {xi | i ∈ [u]}, Y = {yi | i ∈ [u]},
Z = {zi | i ∈ [u]} for some u ≥ 1 and W ⊆ X × Y × Z. The idea is to use constraint
(a) (no worker is assigned to more that one job at a time) to achieve the needed match-
ing condition. We take elements from X (Y , Z) as workers available on day 0 (1, 2,
resp.) and use domains to fix the given triples from W . More precisely, we define a
corresponding TAS-instance (t,K,U, J) as follows:

— The scheduling period has t = 3 timeslots.
— There are |W | different domains in K.
— Each triple w ∈ W is encoded as a job jw, and all jobs have pairwise different do-

mains. For all jobs jw we set quality and cost threshold to Qjw = Cjw = 3 and release
date to rjw = 0.

— Workers are defined as U = X ∪ Y ∪ Z. For x ∈ X, y ∈ Y and z ∈ Z we set
the availability to ax = (1, 0, 0), ay = (0, 1, 0) and az = (0, 0, 1), respectively. To fix
expertise and wage, we consider each triple w = (x, y, z) ∈W and the corresponding
job jw. If jw has domain k then we define exk = eyk = ezk = 1 and wxk = wyk = wzk =
1. All entries in expertise and wage vectors that are not addressed hereby are set to
0.

First observe that a job jw with w = (x, y, z) reaches its quality threshold if and only
if we assign workers {x, y, z} to this job, since exactly these workers contribute to the
job’s domain.

Now we argue that the given 3-DM instance has a perfect matching M if and only
if the constructed TAS instance has a feasible solution with |M | = u completed jobs. If
M ⊆W is a 3-dimensional matching, then we consider the TAS-solution Ujw = (x, y, z)
for all w = (x, y, z) ∈M . Since M is a matching all distinct solution vectors differ in all
components, so constraint (a) is satisfied. All other constraints are easy to check, just
note that each worker is available only on a single day, that all jobs are immediately
released and that no job can exceed the budget. All jobs in this solution are completed
due to our previous observation.

Conversely, note that if there is a feasible TAS-solution with completed jobs jw and
w = (x, y, z), then it must be that Ujw = (x, y, z). Since constraint (a) holds, the solution
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vectors for any two distinct jobs differ in all components. So M = {(x, y, z) | Ujw =
(x, y, z) and jw completed} is a 3-dimensional matching and |M | = u.

The reduction function maps only to TAS-instances where all integer values are
polynomially bounded in the input length, so strong NP-hardness follows.

This rules out the possibility of pseudo-polynomial algorithms and the existence
of fully polynomial-time approximation schemes for TAS unless P equals NP. Fur-
thermore note that the reduction emphasizes the aspect of timeline sequencing, since
worker-task-assignments in the constructed TAS-instance are trivial (there is exactly
one feasible worker-assignment possible to reach the quality threshold of each job).

4. AN ONLINE ALGORITHM FOR TAS
Due to the dynamic nature of crowdsourcing systems, it seems not realistic to consider
TAS as an offline problem where algorithms are provided with the complete input at
once. In fact, worker availabilities are hardly predictable and it is usually not known
in advance which jobs will enter the system at what time. So the problem of task
assignment and sequencing is inherently online in nature and decisions have to be
taken without complete information about the input data. We say that an algorithm
for TAS has the online property, if it processes the input in a serial way with regard
to the timeline d = 0, 1, . . . and in each step d the algorithm has to take its assignment
decisions while having access only to the time-dependent information of the input for
timeslots ≤ d. These are the worker availabilities and the jobs released up to day d.
For more background on the general concept of online algorithms we refer to [Borodin
and El-Yaniv 2005].

To design such an algorithm we start with the following observation: Suppose a
feasible solution y for TAS is given. If we look at a single day d in this solution then
the assignments of workers to jobs for that day form a bipartite matching between the
(uncompleted) jobs with (remaining) quality needs and budget on one hand, and the
set of available workers for that day on the other hand. Constraints (a) and (b) form
exactly this bipartite matching condition.

So conversely, if we proceed day by day with our online algorithm, we can try to com-
pute a matching between the active (= released but incomplete) jobs J ′ in the system
on that day, and the available workers U ′ for that day. Note that due to this choice of
J ′ and U ′ we also immediately satisfy constraints (d) and (e). It remains to consider
constraints (c) (no worker assignment to the same job twice) and (f) (no job exceeds
it’s budget). Both can be taken care of when we construct the edges of possible assign-
ments in the bipartite graph between J ′ and U ′: If the remaining budget for a job is
smaller than the wage of a worker in this domain, then the edge is omitted. The same
is true if the worker has already been assigned to this job in the past. Both conditions
can be checked when looking at the partial solution for timeslots < d. Together, this
online procedure results in a series of matchings Md for d = 0, 1, . . . , t − 1 that form a
feasible solution y for TAS.

More than that, we want to choose a sequence of matchings that yields a large num-
ber of completed jobs. Among all possible matchings for each day d, which is the right
one? We propose a greedy approach and compute in each step a matching, such that
the sum of profits we get from the respective assignments for that day is maximized.
More precisely, we construct for each day a weighted bipartite graph where each pos-
sible assignment (edge) claims a certain profit. In our algorithm, the profit is just the
amount of expertise per wage unit (efficiency). The problem MAX WEIGHTED BIPAR-
TITE MATCHING can be solved to optimality by known algorithms in polynomial time,
e.g. if we apply the Hungarian Method this step has a running time proportional to
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O((|J ′| + |U ′|)2|E|) [Kuhn 1955]. So we obtain the following online algorithm (Algo-
rithm 1: TAS-ONLINE) for TAS with polynomial running time O(t|J |3|U |3).

ALGORITHM 1: TAS-ONLINE

Input: A TAS-instance x = (t,K, U, J)
Output: A feasible solution y for x.
1 Set Ujd = none for all j ∈ J and d ∈ [t].
2 for d = 0, 1, . . . , t− 1 do // proceed day-by-day
3 J ′ = uncompleted jobs with rj ≤ d // active jobs

4 U ′ = workers available on day d // active workers
5 E = ∅ // edge set in bip. graph

6 for (j, i) ∈ J ′ × U ′ do
7 if i ∈ Uj then pass // ensures (c)
8 if eikj == 0 then pass // i has no expertise in j’s domain

9 if wikj > Cj − cj then pass // ensures (f)

10 profit ← eikj/wikj

11 E ← (j, i, profit)
12 Md ←MaxWeightedMatching(J ′, U ′, E)
13 for (j, i) ∈Md do
14 Ujd = i // worker-task-assignment
15 return {j 7→ Uj | j ∈ J}

This algorithm can be viewed as an online schema that allows multiple extensions,
which we discuss in section 6 on the basis of the present basic version.

5. EXPERIMENTAL EVALUATION
With the hardness result we have already seen that TAS has the KNAPSACK deci-
sion problem as a subproblem. It is known from the literature that no competitive al-
gorithm for the online version of KNAPSACK exists where items arrive one at a time
[Marchetti-Spaccamela and Vercellis 1995]. An online algorithm is called competitive
if the ratio of its performance and an optimal offline algorithm’s performance can be
bounded, a usual performance measure for online algorithms [Borodin and El-Yaniv
2005]. It follows that no competitive online algorithm for TAS exists either. Therefore,
in order to evaluate TAS-ONLINE experimentally, we formulate alternative algorithms
to compare with (section 5.1). We then conduct two types of experiments: synthetic
(sections 5.2, 5.3 and 5.4), where we experiment with a known simulated crowdsourc-
ing instance and its variations, and real-world (section 5.5), where we examine our
model on an actual crowdsourcing platform. To evaluate our approach we compare
the algorithms principally in terms of the value of the objective function (i.e. the met-
ric that the TAS model is meant to optimize), both as an absolute number and as a
percentage of the upper bound of completable jobs. We also use four auxiliary met-
rics, meant to provide more information on the algorithm’s behavior: the number of
assigned workers, flow time, budget utilization and quality reached.

5.1. Alternative Algorithms
We evaluate the performance of TAS-ONLINE using five benchmarks, with each bench-
mark extending the previous with a new functionality. The first version of the algo-
rithm (Algorithm 2: RANDOM) builds a feasible solution randomly and without any
individual preferences of workers, similarly to a fully self-organized system. We sim-
ply iterate over the available workers and pick a feasible job.
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ALGORITHM 2: RANDOM

Input: A TAS-instance x = (t,K, U, J)
Output: A feasible solution y for x.
1 Set Ujd = none for all j ∈ J and d ∈ [t].
2 for d = 0, 1, . . . , t− 1 do // proceed day-by-day
3 J ′ = uncompleted jobs with rj ≤ d // active jobs

4 U ′ = workers available on day d // active workers

5 while U ′ 6= ∅ do
6 pick worker i ∈ U ′ randomly, remove it
7 J ′

i = feasible jobs for worker i
8 pick job j ∈ J ′

i randomly
9 Ujd = i // worker-task-assignment

10 if qj ≥ Qj then remove j from J ′ // remove completed jobs

11 return {j 7→ Uj | j ∈ J}

To obtain the feasible jobs for i in line 7 we proceed as in lines 7 to 9 in TAS-ONLINE
and additionally check that j is still without worker assignment for that day.

For the next version of the algorithm (Algorithm 3: RANDOM EGOISTIC) we assume
that workers try to pick the jobs offering a larger wage first, thus modeling a typical
crowdsourcing environment, where workers are self-appointed to tasks trying to max-
imize their individual profit [Rogstadius et al. 2011]. To do so, we substitute line 8 in
the previous algorithm with the lines stated in Algorithm 3.

ALGORITHM 3: RANDOM EGOISTIC

80 let k0, k1, . . . be the domains sorted decr. by i’s wage
81 for k = k0, k1, . . . do
82 J ′

i = feasible jobs for worker i from domain k
83 if J ′

i 6= ∅ then
84 pick job j ∈ J ′

i randomly
85 break

In the next step (Algorithm 4: RANDOM EGOISTIC FILTER), we extend RANDOM EGO-
ISTIC with a filter that restricts the jobs that are offered to each worker based on ex-
pertise. This models the practice employed by many crowdsourcing platforms today,
where workers can only access a task if they successfully pass a “screening” (realized
through the use of performance levels, golden data, reputation, or other means across
the different platforms) [Downs et al. 2010; Jøsang et al. 2007], which allows to ex-
pect a substantial contribution to the job’s quality by these workers. This “screening
threshold” is expressed by an additional parameter 0 < factor < 1 which determines
the minimal expertise needed. Therefore we additionally substitute line 7 with the
following lines.

ALGORITHM 4: RANDOM EGOISTIC FILTER

70 J ′
i = feasible jobs for worker i

71 remove all j from J ′
i with eik < (Qj · factor)

As a next variation of Algorithm 2 we design Algorithm 5: ONLINE GREEDY QUALITY.
This algorithm uses an adaptation of a known strategy for online task assignment [Ho
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and Vaughan 2012], in which a job is chosen for a worker deterministically with a
greedy rule: job j is assigned to worker i if the marginal contribution in terms of quality
is maximal among all feasible jobs for worker i. This amounts to replacing line 8 in
Algorithm 2 by the following line (and leaving line 7 unchanged).

ALGORITHM 5: ONLINE GREEDY QUALITY

80 pick job j ∈ J ′
i such that eikj − qj is maximal

Finally, as a last variation we design algorithm Algorithm 6: ONLINE GREEDY EF-
FICIENCY. This algorithm changes the metric for job selection used by Algorithm 5:
ONLINE GREEDY QUALITY to the best ratio of expertise per wage unit (efficiency), i.e.
it uses the same profit function used in TAS-ONLINE.

ALGORITHM 6: ONLINE GREEDY EFFICIENCY

80 pick job j ∈ J ′
i such that eikj/wikj is maximal

Note that all algorithms so far have the online property for TAS. Finally, for reasons
of comparison, we use an offline algorithm (Algorithm 7: TAS-OFFLINE) that does not
have to proceed day-by-day but has access to the complete input at once. This clair-
voyant algorithm knows in advance which workers will be available on which days of
the scheduling period, and also which jobs will eventually enter the system. It pro-
ceeds job-by-job and treats each job as a knapsack that has to be packed with workers
(items) that are available after the job’s release date. To obtain such a packing, it calls
an optimal algorithm for MAX KNAPSACK that returns a packing with minimal cost
such that the quality threshold is reached. Then, for the workers from this packing (=
worker-task assignment), a sequencing on the timeline with regard to their availability
is fixed, before the next job is considered.

The algorithm has two more parameters that influence the way workers are selected
for input to the knapsack algorithm for a job j. With lookahead we specify the interval
of timeslots [rj , rj+lookahead ] from which the available workers are chosen in order to
control the maximum flow time of each job. Flow time for job j is the number of times-
lots between the job’s release date rj and the latest worker assignment on j. Secondly,
we use minavail to ensure that each worker has at least minavail -many free times-
lots remaining in the above interval in order to facilitate the allocation of timeslots
afterwards.

The offline algorithm does not guarantee optimal solutions for TAS for various rea-
sons. However, it is designed to complete as many jobs as possible by the particular use
of offline information and by incorporating optimal solutions to the knapsack subprob-
lems. Note that due to the standard dynamic-programming (DP) algorithm for MAX
KNAPSACK this is only a pseudo-polynomial time algorithm (the DP-table has dimen-
sion |U | × Cj for each job) [Kellerer et al. 2013]. While we observe that this still yields
tolerable runtimes for realistic input sizes, it is also possible to scale down the range
of cost thresholds, or to use a fully polynomial-time approximation-scheme instead, if
runtime becomes crucial.
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ALGORITHM 7: TAS-OFFLINE

Input: A TAS-instance x = (t,K, U, J)
Output: A feasible solution y for x.
1 Set Ujd = none for all j ∈ J and d ∈ [t].
2 for j ∈ J do // ordered by release dates
3 U ′

j = feasible workers for j
4 for i ∈ U ′

j do
5 if notminavail in [rj , rj+lookahead ] then
6 remove i from U ′

j

7 Wj ← DynProgKnapsack(U ′
j , Qj , Cj)

8 for i ∈Wj do // sorted decr. by expertise
9 d = earliest available timeslot ≥ rj for i

10 Ujd = i // worker-task-assignment
11 aid = 0 // set i unavailable on d
12 return {j 7→ Uj | j ∈ J}

5.2. Synthetic Data Experiment
We first experiment with synthetic data, which were generated using the experimen-
tal result distributions reported in [Basu Roy et al. 2015], where AMT workers worked
on the complex task of news writing. For simplicity, all modeling elements were gen-
erated in the [0 − 1] scale. Worker expertise received a random value from a normal
distribution with mean equal to 0.5 and a variance 0.15, while worker wage received
a random value from a normal distribution with mean equal to 0.5 and variance 0.2.
For this set of experiments worker acceptance was set equal to 1. Job quality threshold
was modeled using a beta distribution with α = 5, β = 1, so that most jobs require a
quality of at least 0.6 of 1 and higher with only a tail of jobs requiring less. Job cost
threshold was then modeled as linearly related to job quality. Worker and job arrivals
were modeled as Poisson processes with an average λ = 200 worker/day, and µ = 20
jobs/day, respectively. Overall, we simulated a timeline of 30 days, during which 1000
workers (re)entered the system and 600 jobs were requested, belonging to 10 knowledge
domains. So we have the following numbers in terms of our model:

t |K| |U | |J |
30 10 1000 600

First we compute an upper bound on the number of ultimately completable jobs
using the optimal DP-algorithm for MAX KNAPSACK: Assume for each job that this
job is the first for which we compute a worker-task assignment, i.e., all workers with
at least one available timeslot ≥ rj are possible knapsack items regardless of any
other assignments. Now if the DP-algorithm does not find a packing within budget
and above the quality threshold with this input data, then this job cannot be completed
whatsoever. For the present instance, it turns out that at most 515 out of the 600 jobs
can be completed.

We now conduct the quality experiments. In terms of the objective function, we ob-
serve that TAS-ONLINE does not reach the number of completed jobs of our offline
algorithm, but that it is significantly better than the other online algorithms (cf. Ta-
ble II). Note that in Tables II- IV we highlight the values of TAS-ONLINE since these
need to be compared with the other entries.

To get a more precise picture, we want to compare these algorithms not only with
regard to this single measure, but we also look at other characteristics. Next we ask
how many workers are assigned to each job, and how long the flow times are (cf. Ta-
ble III). In both cases we take the average values over all jobs in the system (not only
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Table II. Objective function (completed jobs)

Algorithm absolute % of upper bound
RANDOM 2 0, 39
RANDOM EGOISTIC 98 19, 03
RANDOM EGOISTIC FILTER 114 22, 14
ONLINE GREEDY QUALITY 82 15, 92
ONLINE GREEDY EFFICIENCY 112 21, 75
TAS-ONLINE 355 68,93
TAS-OFFLINE 411 79, 81

the completed ones). In cases where both values are the same, we only have compact
assignments per job without any free slots in between. While TAS-ONLINE seeks this
type of assignments we note that TAS-OFFLINE creates notable slack times, presum-
ably a price to pay for larger number of completed jobs.

Table III. Number of assigned workers and flow time

Algorithm assigned workers flow time
RANDOM 4, 77 4, 77
RANDOM EGOISTIC 3, 46 3, 46
RANDOM EGOISTIC FILTER 1, 64 7, 37
ONLINE GREEDY QUALITY 3, 56 2, 91
ONLINE GREEDY EFFICIENCY 3, 48 3, 02
TAS-ONLINE 3,31 3,31
TAS-OFFLINE 2, 41 8, 11

Now we look at how much budget is used with these assignments, and how much
quality is reached, both relatively to the given thresholds and on average over all the
jobs in the system (cf. Table IV). Due to its greedy nature TAS-ONLINE reaches very
high quality values, not only regarding complete but also incomplete jobs and it ex-
ploits the available budgets to a large extent.

Table IV. Budget usage and reached quality in %

Algorithm used budget reached quality
RANDOM 88, 16 60, 62
RANDOM EGOISTIC 92, 05 90, 27
RANDOM EGOISTIC FILTER 52, 6 55, 77
ONLINE GREEDY QUALITY 91, 44 87, 12
ONLINE GREEDY EFFICIENCY 92 90, 26
TAS-ONLINE 94,35 97,76
TAS-OFFLINE 67, 73 70, 21

Finally, we examine how the main performance measures develop over time, in
terms of the completed jobs (Figure 2) and in terms of the quality reached (Figure 3).
Interestingly, we observe that the higher values in Figure 2 for TAS-OFFLINE appear
towards the end of the scheduling period. A possible explanation is that the lookahead
mechanism of this algorithm takes the end of the timeline into account.

5.3. Scalability Experiments
Next we perform a series of scalability experiments to examine the robustness of our
proposed algorithm under varying conditions of the simulated instance. Given that
worker volatility is the most uncontrollable factor in crowdsourcing, the two param-
eters that we vary are: the available expertise and the available number of workers.
Each parameter is modified independently, while all the other parameters of the base-
line instance presented in section 5.2 are kept the same. The variables that we mea-
sure are also the same as those measured for the baseline instance and include the
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Fig. 2. Job completion over time for each of the five tested algorithms. The proposed algorithm TAS-ONLINE
manages to achieve more completed jobs most of the time compared to its competitors. Time unit expressed
in days.

Fig. 3. Average job quality over time for each of the five tested algorithms. The proposed algorithm TAS-
ONLINE manages to achieve higher quality per time unit compared to its competitors. Time unit expressed
in days.

objective function, as well as budget utilization, total flow time, number of assigned
workers per task and percentage of the average quality threshold reached.

The scalability experimental results are illustrated in Figures 4-13. For each of those
figures the x axis corresponds to the varied parameter, the y axis to the measured vari-
able and the vertical line at x = 1 corresponds to the results of the baseline instance
reported in section 5.2.

5.3.1. Overview of Scalability Experimental Results. Two main remarks can be drawn as an
overview of the scalability experiments. The first is about performance: TAS-ONLINE is
the highest performing among its online competitors, both regarding the value of the
objective function, i.e. the metric that the algorithm is meant to optimize, and on qual-
ity, without significant compromises on any of the remaining metrics. TAS-ONLINE is
the only algorithm among those examined to achieve this: whereas certain algorithms
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Fig. 4. Objective function vs. expertise availability.
The vertical line corresponds to the baseline simu-
lated instance.

Fig. 5. Objective function vs. worker availability.

Fig. 6. Quality reached vs. expertise availability. Fig. 7. Quality reached vs. worker availability.

Fig. 8. Budget usage vs. expertise availability. Fig. 9. Budget usage vs. worker availability.

come close to its performance for certain metrics and parameter values, the same al-
gorithms are significantly low-performing in other metrics and parametrizations.

The second remark is about consistency: TAS-ONLINE is not only more performant,
but its performance is consistent across the varying values of the scalability param-
eters. This result indicates that the performance of the algorithm as detailed in sec-
tion 5.2 is not incidental but an inherent property of the algorithm, and reinforces
trust in the algorithm’s future usage. In the following we present a detailed analysis
of the scalability experiments.

5.3.2. Scalability Effect on Objective Function: TAS-ONLINE Gets Consistently More Jobs Done.
In Figure 4 we measure the value of the objective function (i.e. the number of accom-
plished jobs) as we modify expertise availability, and higher y axis values are better.
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Fig. 10. Flow time vs. expertise availability. Fig. 11. Flow time vs. worker availability.

Fig. 12. Number of assigned workers vs. expertise
availability.

Fig. 13. Number of assigned workers vs. worker
availability.

As we can observe, the TAS family of algorithms (both the online and the offline ver-
sion) are able to achieve and maintain higher performance than their competitive al-
gorithms, at all expertise levels. For average expertise levels less than those of the
baseline instance TAS-OFFLINE is the best-performing algorithm, followed closely by
TAS-ONLINE, while for expertise levels slightly higher than those of the baseline TAS-
ONLINE takes and maintains precedence. This can be attributed to the fact that when
worker expertise is low, the offline version performs better since it knows worker avail-
abilities beforehand and can thus calculate better assignments. In case of high exper-
tise, the look into the future done by the offline algorithm seems to be of no partic-
ular advantage, since a sufficiently high number of good assignments are possible at
any given moment. The fact that the online does even better than the onffline can be
explained due to the different design patterns of the two algorithms (recall that the
offline is not optimal, since an optimal algorithm cannot be applied for instances of
this size within reasonable runtime unless P=NP). Moreover, as it can be expected,
as the average worker expertise per knowledge domain drops, the performance of all
algorithms drops steeply as well. Nevertheless, we can also observe that the TAS al-
gorithms are more robust, in the sense that they maintain their high performance
when the other algorithms already start losing theirs (notice for example the almost
unchanged performance of TAS-ONLINE between x = 2 down to x = 1.2 compared to
the steep performance drop of the other algorithms in the same range).

A similar pattern can be observed when modifying the worker availability param-
eter (Figure 5). In this case too, TAS-ONLINE is by far the most performant of all the
online algorithms, surpassed only by its offline version. In fact, the performance dif-
ference between TAS-ONLINE and the rest of the algorithms is quite striking here,
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as TAS-ONLINE reaches approximately 60% of the objective function value while the
rest of the algorithms only reach 20%. A second interesting remark that can be de-
rived is that worker availability seems to have little effect on the algorithms after a
certain critical mass of crowd workers has been gathered (which for our simulation
corresponds to x = 0.4, i.e. 40% of the population of the baseline instance). These two
observations (superiority of the TAS-ONLINE and small effect of worker availability
after a certain critical mass) also hold when we measure the effect of the worker avail-
ability parameter on all other variables of the scalability experiment (figures 7, 9, 11
13).

5.3.3. Scalability effect on Quality: TAS-ONLINE Achieves Higher Quality. Figure 6 illustrates
the average task quality (expressed as the percentage of the quality threshold reached)
for every level of expertise of the crowdsourcing population, and higher y axis values
are better. We observe that TAS-ONLINE manages to achieve the highest quality levels,
surpassing even its offline version, for all expertise levels. In fact, given a certain level
of expertise (x = 1.2) and above, the algorithm manages to surpass the quality thresh-
old set for the tasks. RANDOM-EGOISTIC and both versions of ONLINE GREEDY are
the next best performing algorithms respectively, but unlike TAS-ONLINE they achieve
their high quality results at the cost of accomplishing too few jobs, as it can be seen by
juxtaposing Figures 4 and 6 (similarly for Figures 5 and 7).

5.3.4. Scalability on Other Parameters: TAS-ONLINE Performs Comparably to Competitors. Ef-
fect on cost. We now examine the effect that the modification of expertise availability
has on the budget used by the allocation algorithms (Figure 8, smaller y axis values are
better). As we may observe, TAS-ONLINE consumes most (≈ 90%) of its available bud-
get, at the same consumption level as the ONLINE GREEDY QUALITY, ONLINE GREEDY
EFFICIENCY, RANDOM and RANDOM EGOISTIC algorithms. The RANDOM EGOISTIC
FILTER and TAS-OFFLINE algorithms seem to make a slightly better usage of their
budget. Nevertheless, the extra cost consumed by TAS-ONLINE is small, especially as
expertise levels grow and more experts need to be paid (i.e. for x > 1.2). The signif-
icance of this extra cost gets even smaller considering what we gain in terms of the
objective function (Figure 4), where TAS-ONLINE consistently accomplishes more jobs
(almost up to double for x = 1.2) than RANDOM EGOISTIC FILTER. Similar results can
be observed when scaling worker availability (Figures 9 and 5).

Effect on Flow Time. Figure 10 shows the flow time of the algorithms for varying
levels of expertise availability, and smaller y axis values are better. As we can ob-
serve, TAS-ONLINE behaves similarly to the rest of the online algorithms. This shows
that there is no trade-off of performance for time, i.e. the proposed algorithm does not
achieve its higher objective function values at the cost of flow time. Similar results can
be observed when scaling worker availability (Figure 11).

Effect on Number of Assigned Workers. Figure 12 shows the change in the average
number of workers per task, as we modify the availability of expertise, and lower val-
ues of the y axis are better. Here, and for most algorithms, we observe a very steep
drop in the number of assigned workers, as the average expertise of the crowd worker
population increases. This fact is to be expected since the algorithms need to assign
multiple workers to achieve the quality thresholds when expertise is scarce. Similar
results can be observed when scaling worker availability (Figure 13).

5.4. Job Prioritization
During the scheduling period some jobs may become more urgent than others, for ex-
ample in crowdsourcing systems dealing with crisis response [Imran et al. 2013] or
multi-tenant crowd systems where concurrent requesters can impose different job pri-
orities [Difallah et al. 2016]. Job prioritization can be incorporated in the model based
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on flow time, on a given deadline, on the quality left to reach the threshold (jobs close
to threshold go first), or other criteria. Our TAS-ONLINE algorithm uses a flexible profit
function to rate all feasible assignments per day. Therefore if some jobs (or workers)
become preferred over others, the profits on the respective edges can be easily changed.
This change is possible for individual worker-task combinations and it can additionally
be adjusted in each time slot for a close progress control. For instance makespan prior-
itization can be used when worker availability is low and removed when more workers
become available. To point out the applicability of TAS-ONLINE in these situations, we
have conducted an experiment with an adapted version of our algorithm, where jobs
with currently larger flow time have strictly higher profits over jobs with smaller flow
time. It turns out, that this prioritization has a notable effect when worker availability
is low (scaling factor 0.2), as can be observed from the following Table V.

Table V. TAS-ONLINE with and without priorities

Algorithm completed jobs flow time
TAS-ONLINE 131 4, 19
TAS-ONLINE + priorities 173 3, 18

So the number of completed jobs is larger and flow time is smaller with priorities.
This effect vanishes when the scaling factor for worker availability increases. Cer-
tainly, introducing priorities does not guarantee the absence of long-running jobs or
even starvation. To deal with these situations, a monitoring procedure together with
a stopping mechanism according to some policy could be added easily to TAS-ONLINE.
Note that all other algorithms in our experiments would have to utilize such a mecha-
nism much more frequently due to more incomplete jobs.

5.5. Real Data Experiment
In addition to the synthetic experiments, we conducted a small-scale real-world exper-
iment, to test the applicability of the proposed model on real workers and tasks. In
contrast to the synthetic experiments, this experiment is intended to provide an ini-
tial and qualitative viewpoint of the model’s performance in a real-world setting. The
platform we used was CrowdFlower5. The task we used was collaborative news article
writing, where workers from an initial hiring pool were asked to build on each other’s
content sequentially, enriching a news article text on a given topic. Our experimental
workflow consisted of three steps.

In the first step we recruited a pool of 60 workers and recorded their expertise, wage
and availability. To measure expertise, we asked each worker to complete two short
multiple choice tests, each comprising 10 questions and measuring the workers’ know-
ledge skills on a particular topic of current interest, i.e. “The FIFA 2015 corruption
scandal” and “Self-driving cars” respectively. Each one of these topics is considered a
knowledge domain for the purposes of our experiment. We also gave workers an es-
timation of the effort that they would have to spend on the second round of the task
(i.e. work for approximately 30 minutes on one particular day of the next 8 days, as
explained in the algorithm setup of the timeline parameter later on) and asked them to
provide us with their required wage and availability per day. Worker expertise was on
average 5.02 (std=1.86) for the ‘The FIFA 2015 corruption scandal” and 4.78 (std=2.11)
for the “Self-driving cars” domain. The requested wage on average was $4.9 (std=$2.7).
Worker availability was on average 20 workers per day (std= 8.12). Note that, to keep
up with the requirements of the online setting, only the availability of each given day
was considered known by the algorithms, and used only to invite the selected (among

5http://www.crowdflower.com
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the available) workers, i.e. to avoid spamming the rest (who had declared to be un-
available on that day).

In the next round we split the hired pool of workers randomly into two parts, one
to be used by the benchmark and one by the optimization algorithm during schedul-
ing. We also created six Google documents for each algorithm, three per knowledge
domain, which corresponded to the jobs that would have to be accomplished. The qual-
ity and cost thresholds, as well as the release date for each job were set according to
the same job generation criteria used in the synthetic experiments, and they were the
same for the jobs of the benchmark and the optimization algorithm. To keep up with
the real worker wage requirements, the job cost threshold was adjusted accordingly,
with 100 cost points of the synthetic experiment corresponding to $10 in the real data
experiment.

In regards to the algorithms to be compared we used RANDOM EGO. FILTER as bench-
mark with factor = 0.3 (a worker was allowed to undertake a job only if their exper-
tise was at least 30% of the target job quality) and TAS-ONLINE as the optimization
algorithm. This algorithm was used as the benchmark given that it had the best per-
formance among the online competitors of TAS-ONLINE in the synthetic experiments
(see Table II). Finally we set the scheduling period to t = 8 slots and the time unit to
one day. Each day, one worker would be invited to contribute to each Google document.
The writing instructions that the document contained for the worker were as follows
(using as an example the “FIFA 2015 corruption scandal” knowledge domain):

“Welcome! In the previous round you passed a multiple choice test about your knowl-
edge on the FIFA 2015 scandal. Here you will write a short news article about this topic.
Assume that you are a journalist and that you have been assigned to write or modify a
news article about the recent FIFA 2015 corruption scandal. After your contribution the
article must: i) be approximately 150 words in length, ii) have a clear descriptive title,
iii) cover the specific news event as completely and accurately as possible, iv) be unique
(do not copy from another news source) and v) be grammatically and syntactically cor-
rect.”

After these instructions and in the same document, the worker found either a blank
article page to complete (if the article did not yet exist), or another worker’s previous
version of the article, which they would need to modify. In the same instructions page,
workers were reminded that they had one day to finish the task. At the end of that
day the document would be locked for the particular worker and sent for evaluation
to a crowd of 50 independent crowd workers (different than those used in the exper-
iments) to evaluate the job’s current quality. Each of the 50 workers evaluated each
document, on a 5-point Likert scale across the same five quality dimensions of the
instructions given to the author workers (i.e. length, title clarity, news coverage com-
pleteness, uniqueness and grammatical/syntactical correctness), and the documents
were given to them in a round-robin fashion. The five quality dimensions were aver-
aged to a single numerical value per document, and this value was used to measure
the document’s current quality. In case the document had not surpassed its quality
threshold and not exhausted its budget, a new worker was invited to work on the doc-
ument.

At the end of the scheduling period, the results were as follows: The benchmark
algorithm achieved a successful completion of 3 out of 6 jobs, while the optimization
algorithm achieved successful completion of 5 out of 6 jobs. As it was expected the
benchmark algorithm either allowed workers of the minimum necessary expertise to
take a job, thus delaying the job’s quality progress too much, or it starved the job
of budget. On the other hand TAS-ONLINE selected workers in such a way as to im-
prove job completion within the given time period. As illustrated in Figures 14 and 15,
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similarly to the respective results of the synthetic experiments, TAS-ONLINE achieved
higher average job quality and job completion percentages than the benchmark.

0

20

40

60

80

100

1 3 5 7

A
ve

ra
ge

 jo
b

 q
u

al
it

y 

Day 

Job quality progress - Real 

TAS-Online

Random
Egoistic Filter

Fig. 14. Average job quality over time. The proposed algorithm TAS-ONLINE manages to achieve higher
quality per time unit compared to the benchmark. Time unit expressed in days.
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Fig. 15. Job completion percentage over time. The proposed algorithm TAS-ONLINE manages to achieve
higher job completion rates per time unit compared to the benchmark. Time unit expressed in days.

6. DISCUSSION AND FUTURE EXTENSIONS
The TAS model presented in this paper is the first concrete attempt to incorporate
sequencing in the optimization of non-decomposable expert crowdsourcing macrotasks.
Our results, as presented in the previous, indicate that this model can improve the
performance of crowdsourcing systems and help them utilize their human capital more
effectively. Nonetheless, several challenges still lie ahead and many further extensions
can be envisioned. In this section we briefly discuss how the proposed TAS model and
the TAS-ONLINE algorithm can be adapted to address further challenging settings that
may appear in practice.
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Budget flexibility. Our initial TAS model assumes a fixed budget per job, set by
the customers before the job is launched. However certain commercial platforms, like
CrowdFlower allow jobs to go above their initial budget, and this option could be used
in order to recruit better qualified workers during the scheduling period. One simple
approach for adapting the TAS-ONLINE algorithm to the “flexible budget option” is to
recompute the daily matchings with alternating remaining budgets and explore their
effects. A second adaptation is allowing edges to stay in the bipartite graph if the cost
exceeds the remaining budget by a given fixed percentage, which can even be specified
per job. Since we want to avoid that the algorithm makes too much use of the addi-
tional budgets we can reduce the profit of such edges accordingly. A multi-objective
view of the optimization problem can also be useful to reveal these budget trade-offs.

Non-Acceptance of Assignment. The initial TAS model assumes that worker avail-
ability does not change, once the workers declare themselves available for a specific
day. An adapted version of this model could be that workers can decline a certain as-
signment or they may be marked as unavailable by the system after a certain period
waiting for their reaction has timed-out. A natural adaptation of the TAS-ONLINE al-
gorithm to this setting is to perform a partial recomputation of the matching for the
specific day, where all accepted assignments (workers and corresponding tasks) and
all stalled workers are removed from the graph. Note that this also allows to bring in
new workers and jobs that became available only very recently within the day.

Quality aggregation model. In this paper we model task quality by summing the ex-
pertise of the task contributors, where expertise is assumed to be the added quality
that a worker can bring to the tasks of a given domain. This quality model is meant
to capture the iterative improvements, sometimes important and sometimes minimal,
which multiple workers, one after the other, can produce thanks to their different per-
spectives and knowledge. Experimental grounding for the additive quality model can
be found in prior literature. Little et al. [2010] show that crowd workers iterating on
one another’s contributions produced tasks of increasing average quality, with statis-
tically significant experimental results for writing and brainstorming tasks. Dai et al.
[2010] propose an iterative workflow, overseen by a decision theory-based automated
planner, which consists of incremental task improvements followed by quality evalua-
tions through worker voting until a certain task quality level is reached. Results show
that this iterative model can yield higher task quality compared to non-iterative pro-
cesses. Roy et al. [2015; 2014] integrate the additive task quality model in a framework
for computing task assignments based on pre-indexing, and show that it can help im-
prove the quality of knowledge-intensive tasks like news writing. Finally, Goto et al.
[2016] extend the additive model with a penalty in case a worker’s contribution fails
to improve the task.

In the future, other models for calculating task quality could be considered, such as
the maximum contribution one, where task quality is determined by the worker with
the highest expertise among those that have contributed to the task. Our algorithm
could be adapted to accommodate these models, thanks to the flexible graph structure
that it uses to represent the possible assignments of workers and tasks. Essentially,
the algorithm matches one numerical property of the particular worker-task-relation
(in this paper the profit calculated as the worker’s expertise in the domain of the task
divided by their wage for that domain) using the edges of a bipartite graph, which
initially connects each task to each worker and then is reduced according to the con-
straints of the given problem model.

Adaptations to the way that the edges are dropped can allow implementing different
quality evaluation models. For example in this paper a worker-task edge is dropped
when: i) the worker has already contributed to the task, or ii) the worker has no exper-
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tise in the task’s domain or iii) the wage of the worker for this domain is greater than
the remaining budget of the task. In case the maximum quality calculation model is
used, meaning that a new worker can only be matched to a task if she brings a quality
higher than any of the previously allocated workers, then the algorithm should also
drop all worker-task edges pointing to workers with expertise less than the quality
currently achieved for the specific task. As a consequence, the algorithm would return
feasible assignments of workers to tasks such that for each single task only workers
with increasing expertise are allocated over time, while respecting budget limitations
and other constraints.

Adaptations to the graph edge values could also be foreseen and lead to further in-
teresting future research. For example, in this paper, a worker’s expertise is calculated
per domain, i.e., it is considered identical for all tasks of that domain for the particular
worker. By changing the values of selected worker-task edges, the algorithm can be
adapted to handle per task, rather than per-domain expertise and quality models. Or
even more specifically, worker expertise could also be calculated taking into account
the past improvements of the individual task, meaning that consecutive worker con-
tributions will have a decreasing marginal added quality when the already achieved
task quality increases. The algorithm could be customized to address this expertise
calculation mode by changing and recalculating the worker-task edge values per time
slot. But although the algorithm basis (i.e. the graph) can be easily adjusted to accom-
modate the maximum quality and other calculation models or problem requirements,
adopting these models raises the need for further research and experimental evalua-
tion. We believe that one interesting research direction in this context could be looking
for mechanisms to postpone assignments based on worker arrival predictions, in order
to treat the given budget with care.

Learning. In our initial TAS model we consider expertise as an inherent, fixed prop-
erty of each worker. For certain tasks however, like creative ones, the expertise of a
certain individual can develop over time, and with the number of accomplished tasks,
as workers ‘learn by doing’ [Dow et al. 2012; Basu Roy et al. 2013]. An improved version
of the model could recognize this and perform an adjustment of worker expertise over
time. According to this version, the expertise per worker needed by the TAS-ONLINE
during graph construction each day could be the outcome of a previous learning pro-
cess (e.g. machine learning as in [Lykourentzou et al. 2010]). The online version of the
TAS algorithm is particularly well-suited for such an dynamic adjustment.

Order of workers per job. In our problem formulation the order in which the assigned
workers per job are placed on the timeline is arbitrary (openshop model), to simulate
the first-come first-served mode of functionality of typical crowdsourcing platforms. It
could nonetheless be reasonable for certain applications to require a specific order of
workers, e.g. in a decreasing order of expertise. A straightforward approach to adapt
TAS-ONLINE to such a request is to drop all the edges in the bipartite graph for each
day such that the only workers that remain assignable are those that correspond to
the order criteria. Again, this can be adopted over time such that, for example, each
job begins with an assignment of some workers with sufficient but relatively small
expertise, to leave room and budget for enhancement.

Multiple assignments per worker. Constraint (a) of our examined TAS model allows
only one task per worker and timeslot. Note that the model is in fact more general
since one can introduce fake workers for the same person and hence generate multi-
ple assignments per worker per timeslot. Furthermore, constraint (c) demands that a
worker can only be assigned once to the same job along the timeline. This is a simpli-
fied model assumption. In case one considers more than one timeslot per worker (with
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or without preemption) this would result in a much more complex model. For exam-
ple this would induce the need to calculate and adjust a worker’s expertise depending
on the number of contributions of this worker the same job, because the “amount”
of his/her contribution will not be same in a second assignment as opposed to a first
one (e.g. due to learning effects, where the worker is already familiar with the job).
Certainly, this can be further studied in future work.

Algorithm Extensions using Lookahead. The algorithm proposed in this paper
is a first attempt to solve the problem of task assignment optimization for non-
decomposable macrotasks. At each given time slot, the algorithm calculates a feasible
matching of workers to tasks for the next time slot, and it does so in an online fashion,
i.e. without depending on any future information about the workers or the tasks. This
process results in having calculated, at each time slot, a feasible sequence of work-
ers per task up to that slot. Nevertheless, and although the problem model involves
worker sequencing, the algorithm does not calculate future sequences of workers span-
ning multiple future slots. As a future extension the algorithm could be coupled with
a lookahead mechanism, according to which it could rely on past worker and task in-
formation to foresee future worker availability, worker performance and task arrivals,
and then use these predictions to compute worker sequences per task spanning multi-
ple slots. Adding lookahead could improve the algorithm’s performance, for example in
terms of computation time: instead of revisiting its assignment decisions at every sin-
gle time slot to adapt to the dynamic conditions of the crowdsourcing setting (changes
in worker availability or task arrival rates), lookahead could enable the algorithm to
plan ahead for multiple slots and run only periodically to verify the plan or make
marginal adaptations. Naturally, this would give rise to future research, necessary to
explore the depth of lookahead that could provide the best tradeoff between computa-
tion time and efficient assignments.

The above correspond to the main modifications that could be made to adapt the
proposed TAS model and TAS-ONLINE algorithm to multiple real-life situations, de-
pending on the crowdsourcing platform, population and type of jobs at-hand. As such
they could be used independently or in various combinations as the starting points for
further studies in expert crowdsourcing optimization.

7. CONCLUSION
In this paper we present TAS, a problem model that examines online optimization in
expert crowdsourcing settings that involve non-decomposable macrotasks. We prove
the problem’s NP-hardness and propose a greedy assignment and sequencing algo-
rithm, namely TAS-ONLINE, to address it. We illustrate through simulated and real-
world experiments that optimization under this model can significantly improve per-
formance. Our results have implications for enhancing the Quality of Service of crowd-
sourcing platforms offering non-decomposable complex tasks, but also for allowing on-
line expert crowdsourcing communities to make better use of their human capital and
available expertise. Multiple future extensions can be foreseen. These include extend-
ing the proposed TAS model to handle requirements such as budget flexibility, the
non-acceptance of assignments by the workers, different job quality aggregation mech-
anism, learning, varying modes of assignment order and number of assignments per
worker, as well as forecasting.
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Daniela Retelny, Sébastien Robaszkiewicz, Alexandra To, Walter S. Lasecki, Jay Patel, Negar Rahmati,
Tulsee Doshi, Melissa Valentine, and Michael S. Bernstein. 2014. Expert Crowdsourcing with Flash
Teams. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology
(UIST ’14). ACM, New York, NY, USA, 75–85. DOI:http://dx.doi.org/10.1145/2642918.2647409

Jakob Rogstadius, Vassilis Kostakos, Aniket Kittur, Boris Smus, Jim Laredo, and Maja Vukovic. 2011. An
Assessment of Intrinsic and Extrinsic Motivation on Task Performance in Crowdsourcing Markets. In
Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, Catalonia,
Spain, July 17-21, 2011. http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2778

Jan Henrik Sieg, Martin W. Wallin, and Georg Von Krogh. 2010. Managerial challenges in open innovation:
a study of innovation intermediation in the chemical industry. R&D Management 40, 3 (2010), 281–291.
DOI:http://dx.doi.org/10.1111/j.1467-9310.2010.00596.x

Jaime Teevan, Shamsi T. Iqbal, Carrie J. Cai, Jeffrey P. Bigham, Michael S. Bernstein, and Elizabeth M.
Gerber. 2016. Productivity Decomposed: Getting Big Things Done with Microtasks. In Proceedings of
the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’16).
ACM, New York, NY, USA, 3500–3507. DOI:http://dx.doi.org/10.1145/2851581.2856480

Jaime Teevan, Daniel J. Liebling, and Walter S. Lasecki. 2014. Selfsourcing Personal Tasks. In CHI ’14
Extended Abstracts on Human Factors in Computing Systems (CHI EA ’14). ACM, New York, NY, USA,
2527–2532. DOI:http://dx.doi.org/10.1145/2559206.2581181

Han Yu, Zhiqi Shen, and C. Leung. 2013. Bringing reputation-awareness into crowdsourcing. In Infor-
mation, Communications and Signal Processing (ICICS) 2013 9th International Conference on. 1–5.
DOI:http://dx.doi.org/10.1109/ICICS.2013.6782912

Tao Yue, Shaukat Ali, and Shuai Wang. 2015. An Evolutionary and Automated Virtual Team
Making Approach for Crowdsourcing Platforms. In Crowdsourcing, Wei Li, Michael N.
Huhns, Wei-Tek Tsai, and Wenjun Wu (Eds.). Springer Berlin Heidelberg, 113–130.
DOI:http://dx.doi.org/10.1007/978-3-662-47011-4 7

Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. 2011. Task Matching in Crowdsourcing. In Proceed-
ings of the 2011 International Conference on Internet of Things and 4th International Conference on
Cyber, Physical and Social Computing (ITHINGSCPSCOM ’11). IEEE Computer Society, Washington,
DC, USA, 409–412. DOI:http://dx.doi.org/10.1109/iThings/CPSCom.2011.128

Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. 2012a. Task recommendation in crowdsourcing sys-
tems. In Proceedings of the First International Workshop on Crowdsourcing and Data Mining (Crowd-
KDD ’12). ACM, New York, NY, USA, 22–26. DOI:http://dx.doi.org/10.1145/2442657.2442661

Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. 2012b. TaskRec: probabilistic matrix factorization
in task recommendation in crowdsourcing systems. In Proceedings of the 19th international conference
on Neural Information Processing - Volume Part II (ICONIP’12). Springer-Verlag, Berlin, Heidelberg,
516–525. DOI:http://dx.doi.org/10.1007/978-3-642-34481-7 63

Omar F. Zaidan and Chris Callison-Burch. 2011. Crowdsourcing Translation: Professional Quality from
Non-professionals. In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies - Volume 1 (HLT ’11). Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 1220–1229. http://dl.acm.org/citation.cfm?id=2002472.2002626

Haoqi Zhang, Edith Law, Rob Miller, Krzysztof Gajos, David Parkes, and Eric Horvitz. 2012. Hu-
man Computation Tasks with Global Constraints. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’12). ACM, New York, NY, USA, 217–226.
DOI:http://dx.doi.org/10.1145/2207676.2207708

ACM Transactions on Social Computing, Vol. V, No. N, Article A, Publication date: January YYYY.


