
Reconsidering End-User Development Definitions

Nikolaos Batalas1, Ioanna Lykourentzou2, Vassilis-Javed Khan3, and Panos
Markopoulos1

1 Eindhoven University of Technology , The Netherlands
nikolaos.batalas@gmail.com, p.markopoulos@tue.nl
2 Utrecht University, The Netherlands i.lykourentzou@uu.nl

3 Sappi Europe, Belgium Javed.Khan@sappi.com

Abstract. We consider definitions that End-User Development and related fields
offer for end-user developers, and identify the persistence of viewing end-user
development as antithetical to professional development across the years, even
as focus has shifted from the identity and then to the role of the developer, and
later to the intent of the development effort. We trace the origins of this antithesis
to the days of End-User Computing in organizational settings, and argue that
modern software development resides in a different paradigm, where end-user
Development is part and parcel of any programming endeavour, in professional
or other settings. We propose that current development practice, both for those
traditionally regarded as end-user and as professional developers, can be better
served by EUD as a field, if the focus is shifted to the nature of the task itself, and
how technical it needs to be, by way of the platforms that development takes place
on.

Keywords: end-user development · technical development · definitions

1 Introduction

End-User Development (EUD) is a field of academic research dedicated to the making
of software. Related fields such as End-User Programming (EUP) or End-User Software
Engineering (EUSE) also address specific aspects of software creation/maintenance.
The terms are distinct; EUP can be considered as being about program creation itself,
whereas EUSE addresses concerns around reliability, reuse and maintainability. EUD
claims to address the wider range of practices that are involved in software development,
including design practices. As such, EUD can be considered to be the more encompassing
term, inclusive of EUP and EUSE 4. In this text, the term end-user development will

4 It is interesting to note here the observation by Barricelli et al. [2], that the choice of field
to which authors will ascribe their work tends to be a matter of academic culture. European
authors will file their work under EUD because of its namesake European Commission initiative,
the European Network of Excellence on End-User Development (EUD-Net) which created a
network of researchers and relevant conferences. American authors, on the other hand, will
prefer the term EUP, which did originate in the United States, and a small subset of those, the
community of US universities that participated in the EUSES Consortium pursue work under
EUSE.

2 N. Batalas, I. Lykourentzou, V.J. Khan, P. Markopoulos

be the umbrella term for all aspects of practice with regard to the end-user production
of software, unless referencing specific cases, and EUD will denote the wider field of
research, inclusive of topics researched by EUP and EUSE.

EUD’s objectives for software construction differ from the traditional academic
disciplines dedicated to the task. Such disciplines as Computer Science (CS), Electrical
Engineering (EE) or Software Engineering (SE) emphasize specialized knowledge that
relates to the construction of software, on areas that include the following:

– the construction of computing machinery on a physical substrate, and the ways these
can be controlled and composed into more complex systems that are able to execute
programs (which can generally be seen as sets of instructions that operate on data,
or produce signals for adjacent systems).

– the ways in which computational problems can be classified, and the finding of
efficient solutions for solving classes of problems, in terms of execution time and
memory use, as well as studying the properties of relevant data structures.

– the methods via which the development and maintenance of software can be prac-
ticed systematically and with discipline, so that reliable results can be reached with
predicable use of resources.

EUD on the other hand, aims to make easier the construction of computer programs,
or the modification of existing software to alter or extend its functions, but without
demanding that the developers should have to employ the depth of knowledge and
expertise that it takes to develop software on the technical level that the traditional
disciplines are concerned with, regardless of how familiar they are with them.

This paper raises the issue that consideration needs to be placed towards the ways
with which academic communities regard End-User Development and its place within
the wider landscape of software production. It is motivated by a contradiction observed
when applying prevailing definitions of end-user developers to a specific case of software
development in clinical psychology, and which arises from the tendency to define end-
user developers by juxtaposing them against professional developers. The paper traces
the origins of the term end-user developer, and the evolution of software development
practices, to show that on one hand, conceptions of end-user developers are rooted in
organizational settings of the past that do not necessarily persist any more, and on the
other hand, that an important quest of software development has been to render itself
into an EUD endeavour, with successes along the way. Finally, it invites researchers to
reconsider the scope of EUD, from addressing specific types of expertise or intent, to
encompassing the whole range of software development.

2 A cause to reconsider commonly used definitions

Over time, various definitions of EUD have been offered with regard to who the end-user
developer is or what they do. Although the end-user developer tends to be defined in
some way as an opposite of the professional developer, attempts at definitions have
varied, mostly in service of illustrating a particular point that the author is making. With
regard to the workplace, some authors have seen end-user programmers as those who
have non-programming jobs to perform, or do not care about computers, but still have

Reconsidering End-User Development Definitions 3

to program [14, 41]. In researching more accessible ways to produce software, authors
have regarded end-user developers as novices to computer programming or less skilled
at it [31, 46]. Yet others have argued that skill and expertise is irrelevant [29].

In more detail, considering someone as an end-user developer due to aspects of
personal identity (e.g, by being a novice [14] or not caring about computers [41])
excludes potential categories of end-user developers, such as system administrators or
research scientists, labelled as professional end-user developers[51], who possess or
acquire the technical knowledge to develop software in order to further their professional
goals. To overcome such issues, Lieberman et al. [32] cast the end-user developer as a
role, in which someone acts as (rather than is) a non-professional, and offer a definition
for the field of research, rather than the end-user developer or their activities. They define
EUD as “a set of methods, techniques, and tools that allow users of software systems,
who are acting as non-professional software developers, at some point to create, modify
or extend a software artefact”. The antithesis to the professional developer, found in
earlier definitions, remains, but a definition for the end-user developer is missing.

In a later definition, Ko et al. [29] acknowledge the problems of considering end-user
programmer characteristics as a matter of personal identity . They propose that the
characterization of one as being end-user vs. professional developer is a matter of intent,
and as such, expertise and skill in programming are irrelevant. End-user and professional
developer are two endpoints of a spectrum, and one’s place on it is determined by the
number of users they are building the software for. If they are serving their own needs,
they are end-user developers. If they are serving a large population of users of their
software, they are a professional developer. The authors here offer a way to discern
between end-user development and professional development, since the number of users
functions as an indicator of whether the software is intended for personal or wider
user, and therefore a measure of how important it is for the software to be reliable, and
therefore might require professional software engineering practices. According to this
view, end-user development is development for one’s own self, irrespectively of how
experienced the programmer is, whereas developing for others, is a characteristic of
professional development.

Ambulatory Assessment is a research method predominantly used within clinical
psychology, with the purpose of capturing bio-psycho-social processes in the context
of daily life [12], gathering self-reports and sensor measurements from groups of peo-
ple, by sampling them repeatedly over time. Researchers who use it, deploy sampling
instruments to a population of participants in their natural settings, and use the col-
lected data to discover ways in which the constructs under investigation relate to each
other. Oftentimes, they also seek to offer personalized interventions to each participant,
based on data collected. Data collection happens increasingly via mobile platforms
such as smartphones and wearables, and considerable effort goes into the making of
tools to enable clinical psychologists to define what data these platforms collect and
how [22, 49, 3]. With these tools, psychologists do not merely produce parameters for
the configuration of pre-built software, but effectively write programs consisting of
function calls, which perform such actions as instantiating user-interfaces or invoking
the sampling of hardware sensors, which are either executed sequentially or as a result

4 N. Batalas, I. Lykourentzou, V.J. Khan, P. Markopoulos

of conditional branching according to the evaluation of logical statements (if-then-else),
which involve variables representing user or system states.

Researchers who employ these methods, distribute their programs to potentially hun-
dreds of users, who participate in their studies, to use for recording data. They might also
share them with other members of their research community, who wish to reuse them.
We would traditionally (in terms of identity or role) reason about these psychologists
as end-user programmers, given the fact that their formal training or work practices
do not usually include elements of CS, EE or SE that would justify viewing them as
professional programmers, and the fact that the tools that allow them to create these
programs are tailored to their own professional domain. Yet in producing and distributing
their programs, they do not singly intend them for themselves or for others, but for both.
They aim both to collect longitudinal data for their own research purposes, but also to
produce programs that their participants can use to supply this data. Depending on what
view of their intent we espouse, we could use the criteria proposed by Ko et al.[29] to
classify the same activity as either end-user programming, or professional programming,
but definitions of end-user programming or development consider these notions to be op-
posites. This contradiction motivates us to wonder about the discriminatory power these
definitions, which define end-user development as opposite to professional development,
have across various modern development configurations.

For this reason we will try to better understand the two aspects that these definitions
address, that of the end-user and that of the professional developer. In the rest of this
paper we will discuss these concepts in more detail, and argue that modern software-
development practices in professional settings are rife with EUD success stories. Given
our motivating contradiction, we will suggest that it is less fruitful to regard EUD-
research as applicable only to non-professional instances and it is worth to pursue a
definition of end-user development driven by platform and outcome instead.

3 End-user development is an evolving concept

The term end user is arguably an invention of IBM in the 1950s [34]. It was used to point
to people, such as corporate executives, who would be the budget holders responsible for
commissioning the purchase of computing technology [42]. They were considered to be
separate from intermediate users, usually experts who would operate the machines [45],
working in units known as data processing departments, and tasked with performing
computations in answer to questions posed to them by management.

In the 1960s and 1970s, solid state transistors and the microchip brought speed and
power to mainframes, and gave rise to minicomputers. Computing became dramatically
cheaper and thus more accessible to members of organizations working outside of
data processing centers. The end users were now people with access to machines, and
computing departments started dealing with the strategies for organizations to provide
their members with access to applications of the enterprise, as well as manage their
workload.

As the trend continued in the late 1970s and 1980s, employees were able to pro-
cure their own personal microcomputers [4] independently of a dedicated department.
End users were now the users of application software which they did their own data

Reconsidering End-User Development Definitions 5

processing with. The field of End-User Computing (EUC) came more prominently into
being, specifically concerned with enabling and supporting computing performed by
employees within organizational settings. Growing demand for software solutions led
EUC research to consider how to enable these end users to become developers of their
own programs [36], and practice End-User Programming (EUP).

For the purpose of studying the use of computers in organizational settings, several
taxonomies of users were proposed [11, 36, 48, 13], examining what sort of use was
made of Infomation Systems and for what purposes. Classifications of this sort make
sure to set apart data-processing professionals, who are employed to write code for
others. Workers of the organization, who are trained in other domains but write code, are
classified as amateurs [36] and are considered to only write code for themselves [56],
evidently so because they are not employed to write code for others in the first place. It
should be noted that data-processing professionals are designated thus by decree of the
organization. Demand for such workers was too great to fulfill by sourcing them from
specific educational backgrounds or certifications, as is the case with members of a tradi-
tional professional class, and in order for employees to qualify for the computing-related
departments, organizations would oftentimes have to provide specialized training [50].

Therefore, each role of programmer is essentially fixed to the department’s mission,
with employees of the data processing department considered to be the professional
ones. As a result, EUP is not concerned with programming professionals because it is
not concerned with the data-processing department, and not necessarily because the
professionals do not carry out similar tasks or do not need to be supported in similar ways,
e.g. by making the understanding or modification of code more accessible for those just-
starting professionals who do not yet have vast experience. This organizational distinction
is perhaps the reason why end-user developers are juxtaposed against professional
developers, to this day.

During this time and into the 1990s, the Graphical User Interface (GUI) was popu-
larized, and desktops became more user-friendly, and were adopted even more widely.
As one of the main reasons to purchase desktop computers for offices, the electronic
spreadsheet became one of the most popular applications for data processing by end
users. It offered an easy to understand and visually manipulate data, and allowed users
to perform bulk operations on it in ways more intuitive than the type definitions, loops
and memory management of typical programming. It became one of the most prominent
success stories in literature for EUP [8].

Gradually, EUC in organizations became less concerned with application software
and EUP. Data processing departments evolved into Information Technology (IT) depart-
ments, managing the technology infrastructure which allowed an organization to run,
i.e. hardware, networks, software licences and data storage, and supporting end-users in
accessing it. Availability, scalability and security became the more central issues.

EUP moved into the domain of Human Computer Interaction (HCI) [40], where
research was invested in understanding and supporting programming tasks, both as a
general issue, and also within specific application domains. As computing became a
staple of daily life in various forms, discussions on EUP also became disentangled from
organizational settings. More recently, in the 2000s, research programs in the European
Union and in the United States brought about EUD as defined by Lieberman et al.[32]

6 N. Batalas, I. Lykourentzou, V.J. Khan, P. Markopoulos

and EUSE as discussed by Ko et al.[29], and which we discussed in section 2. In both
research programs, the contrast of end-users against professional programmers from the
EUC days of large organizational settings has been carried over into the modern wider
landscape of software development.

Regardless, it is easy to identify parallels between concerns that EUD pursues, and
advances in software development practice. In Table 1 we list such counterparts to
EUD pursuits surveyed by Patterno [44]. In the following section we will argue that
many of the advances that are considered part of modern professional programming, are
essentially EUD advances.

4 Software Development is an evolving end-user development
practice

It can be argued that programmers have always tried to build platforms that would allow
them to function as end-user developers on. That is, as people who want to get their work
done and should not have to care about (some aspects of) the computer, as in Nardi [41].
We maintain that the evolution of computer programming and its related tools is very
much an EUD success story.

Historically, many advances in computer programming have come in the form of
layers of abstraction, whereby two things are achieved; the creator of the abstraction is
able to suppress details of the underlying layers, which are irrelevant to the programming
task, and also to invent and express the model of a machine which is more relevant to
the task, and perhaps even already familiar to the user of that abstraction [33].

In more detail, after initial innovations in performing binary operations with relays
and switches [52] and the first electronic computers in the 40s, the 50s saw the rise of
the stored program and the programmable computer, where the hardware does not need
to be re-wired per program. Adams [1] discusses how subroutines, accessible as symbols
of abbreviated words make it possible for the increasing number of computer users to
produce usable programs of numerical analysis. His focus lies on allowing entry level
programmers to achieve results, and envisions that a verbal statement of the problem
will be sufficient for the computer of the future.

In subsequent years, a host of programming languages and compilers were invented
by people who wished to program computers in terms closer to their level of expertise
or to their application domain. Many of the innovations we regard today as arcane
programming tools, were driven by the personal needs of their inventors to get their
job done. For example, FORTRAN, offering a way to define algebraic expressions, was
heralded as a “revolution”, one that would ”have engineers, scientists, and other people
actually programming their own problems without the intermediary of a professional
programmer” [18]. UNIX came into being because of the desire of its makers to have their
own time-sharing system [47]. Programming languages at levels higher than Assembly,
such as C, offer programmers the model of an abstracted computer, and allow them to
(largely) not care about the particulars of the hardware itself. Fischer [20] acknowledges
the promise of these innovations for making systems more “convivial” [26] a term
which designates technologies that foster creative connections amongst people and their

Reconsidering End-User Development Definitions 7

Table 1: EUD pursuits and corresponding advances in software development practice

End-User Development (EUD) pursuits EUD examples from development prac-
tice

A main goal in EUD is to reduce the learning
effort that might be required to produce non-
simple/complex functionality.

Programming languages share similar goals.
Features such as garbage collection and dy-
namic typing make for simpler languages,
and less bureaucratic code that is easier to
modify. IDE5-features like predictive text
are helpful too.

Some EUD approaches aim to enable users
to compose and customize sets of available
basic elements, which other programmers
have developed.

A lot of software libraries are produced
in service of such goals, e.g., by packag-
ing complex processes into simple purpose-
specific function calls with accessible names
and simpler argument lists6. Many examples
can be found across systems of libraries spe-
cializing in GUI, audio, graphics, I/O, nu-
merical methods, etc.

EUD investigates collaboration processes
and environments, bur the diversity of the
backgrounds of people involved might raise
special concerns.

Yet many software projects employ very dif-
ferent roles, requiring not only software de-
sign and coding, but also the facilitation of
design processes, the production of sketch-
ing and prototyping materials, or documen-
tation. Online collaboration tools support
many of these tasks, using intuitive inter-
faces when GUIs are involved, or accessible
syntax of text7, for producing and sharing
materials.

A central issue of EUD is the discovery and
utilization of intuitions, metaphors, and con-
cepts familiar to the domain of interest so
that designs can be explored and specifica-
tions for software can be produced.

UX design methods, requirements elicita-
tion, and agile practices aim to understand
the domain in which a piece of software is
meant to function, and derive the specifica-
tions, according to which it can be built so
that it is effective and intuitively usable.

5 Integrated Development Environments (IDEs) are classes of applications that automate much of
the work that goes into software development, e.g., maintaining code libraries and versioning,
compilation, linking. They often include helper applications for writing code visually, e.g., UI
editors where drag and dropping interface elements on a canvas generates blocks of code.

6 An exemplar of this is jQuery, a JavaScript library for Web-browsers, mainly for manipulation of
the Document Object Model (DOM), which is the data structure web browsers use to represent
an HTML document programmatically. jQuery was ubiquitous in web development in the late
2000s and early 2010s. It provides a uniform Application Programming Interface (API) across
all browsers, which at the time still had significant differences in their implementation of the

8 N. Batalas, I. Lykourentzou, V.J. Khan, P. Markopoulos

environments, combative to the alienation suffered on account of industrialization [10],
being treated as mere consumers.

Innovations with regard to making code reusable, rendered so by programming-
language constructs such as classes, objects, encapsulation, and distributing as code
libraries, is a way of making these software artifacts end-user programmable. Notably,
programmers in their daily practice set intermediate personal goals to structure their
code in such ways as to build abstractions and interfaces and hide its complexity, so as
to later render themselves end-users of it, and make it easier for themselves to get their
job done by using it as a functional unit.

Furthermore, software development is not a single domain, and does not imply a
uniform technical profile of a practitioner [15]. Different developers hone their craft
on vastly different technical or creative problems, have domain knowledge on different
levels of abstraction within the software-hardware stack, many of which have their own
elaborate theoretical backgrounds (e.g. graphics programming vs database program-
ming) and are end-users of various tools and platforms in order to carry out their work.
Illustrative of this are job listings seeking programmers, which advertise not only for a
particular application domain (e.g. front-end development) or a specific programming
language (e.g. JavaScript) but for familiarity with specific code libraries and APIs (e.g.
Angular vs React). It can very well be the case that the pro in one field is naive in another.

There’s also a large selection of software tools in support of communities. Those
involved in a project or making use of it can share their issues and seek support on
how to solve problems in knowledge markets like StackOverflow. They can report
bugs and propose desired features in issue trackers. They pull ready to use components
from package managers which manage their updates automatically. They can put up for
discussion and run programs in code sandboxes so that others do not have to replicate
their development environment in order to view them. Such tools provide rich avenues
for facilitating cultures of participation, which is also a vision for EUD [19].

5 Professional software development

In the previous sections we have seen that so-called professional computer-programming
and software-development domains are regarded as separate from end-user development,
to a large extent due to legacy organizational points of view for each practice. We have
also pointed out that in many respects, as evidenced by directions in which computer
programming practice has evolved, professionals pursue methods and tools that lessen
the effort of their practice and increase the reliability of their outcomes, in directions
parallel to those that EUD does. In this section we will examine various implications of

DOM, offered higher level helper functions (e.g., click() on top of addEventListener()), which
could also operate on aggregate objects and which are chainable, making for terse and easy to
read programs.

7 Markdown is an example of this, which is a now ubiquitous plain-text formatting language that
keeps the original text readable, but also contains formatting instructions for parsers to produce
rich documents e.g., in HTML.

Reconsidering End-User Development Definitions 9

the term professional as is applied to software development, and why it is not the best
way to, by negation, define end-user development.

5.1 Connotations of professionalism

The definition of the professional is a complex subject of sociology, and several ap-
proaches exist in establishing criteria by which to identify professionals, and the pro-
cesses through which occupations become professions. Visiting the main trends through
which sociology discusses professions and professionals, will give us some indication of
the rich and complex landscape against which these discussions take place.

Trait-based views [23] derive sets of characteristics that distinguish a profession
from an occupation, such as having an organized body of knowledge from which
the provision of services flows, and having autonomy from employing organizations
and authority over the recipients of their services (i.e, having clients, not customers).
This authority is sanctioned by the community at large, imparted through accreditation
by controlled training centers, and regulated through a formally established code of
ethics. The distinction that such traits provide is considered to be quantitative, not
qualitative [23], therefore occupations that are not professional will be found to also
possess them, but to a lesser degree. This places any given occupation on a spectrum
of professionalization, where at one end the traditional professions can be found (e.g.,
physician, attorney, scientist) and at the other those that completely lack these traits.

Various views examine how occupations become professions. The functionalist view
regards the ways in which professions function for the benefit of the larger societal con-
text, and examines interactions between professions, society and structures of authority
such as the state or military. Professions provide services based on knowledge that is that
is both of great importance, and that could be harmful if abused. They ideally support
social responsibility and contribute to the avoidance of authoritarianism and anarchy [16,
page 17].

On the other hand, the conflict approach examines the process of professionalization,
as motivated by the endemic self-interests of the professionals. Traits such as certification
and licensing, regulated by professional associations, are seen as devices for occupational
control, restricting the supply of labour and enhancing the status and earnings of the
professional. To sustain such control, professional associations must also attend to the
quality of their services. [16, page 18].

Evidently, professions and the professionals are created through complex dynamic
societal processes, and can have different expressions in different locales, e.g., they
are often purposefully shaped by state policies. Therefore, professionalism cannot be
reduced to mere technical expertise (as is the case with EUC), which is the focal
point in organizational settings [17, page 100]. To do so, would be to exclude from
consideration influential demands on the shape of both the professionals’ modes of
performing work, but also the realms of their responsibility. Many skilled labourers
call themselves professionals, but they do so, as many others who perform skilled
labour, within and in reference to the complexities and their manner of developing their
knowledge, practicing their vocation and offering their services along their career path.
Used in daily life, the term professionalism conveys the colloquial sense, and can be

10 N. Batalas, I. Lykourentzou, V.J. Khan, P. Markopoulos

considered the opposite of amateur, associated with performing the work for payment,
or not botching the job, concepts which aren’t necessarily mutually exclusive.

5.2 Software development does not have a singular model of labour

Developers of software in particular take up the occupation through a variety of paths,
not all of which originate from academic education [54]. Indicatively, McConnell [35],
summarising published demographics [55, 24, 53], notes how in the USA, there are
50,000 new developers each year, but only 35,000 software-related degrees are awarded
each year. Muffatto [38, page 50] presents the findings of several studies on the demo-
graphics of open source developers, according to which, in terms of education 20% have
just a high school degree, and in terms of professional background, 20% are students in
academia. Paterno [44] states that “more and more applications are being written not
by professional developers, but people with expertise in other domains”. Developers
can arrive from academic education, to training on the job, to self-study. The roles that
participate in the making of software have expanded and diversified as computers acquire
more capabilities and form factors. For example, whereas before the era of multimedia,
in the 1980s, it was enough to have the skills of a computer programmer, in the era
of the World Wide Web it became crucial to employ the skills of a graphic designer.
Nowadays the development of many types of software is increasingly an interdisciplinary
effort, populated both by professionals in the more traditional sense, with education and
certification in their own fields, and knowledge workers of more recent fields of expertise
that take part in software development. For example, user-facing pieces of software have
contributions from User Experience (UX) designers or psychologists (such as workplace
psychologists) who pay attention to requirements, or projects with frequent update cycles
employ experts in tools for Continuous Integration/Continuous Deployment (CI/CD).

As software permeates ever more aspects of daily life, its misfunctions, which
happen by unintended design [21], can effect loss of income8, amplify inequality9 or
even cost lives10. There is therefore very active discussion within software development
communities but also in legal, governmental circles, and society at large, with regard to
the greater responsibility that needs to be taken up by software developers, providers, and
the regulation of their services. However, software development as such, still lacks the
training, qualifications, and modes of regulation that are associated with the traditional
professions [39]. There is yet no standard of care that software development professionals
can be expected to uphold when cases are tried in legal courtrooms [9]. Potentially, a
trajectory could be charted where future legislators will require certain types of software

8 The cost of poor quality software in the US in 2018 was estimated to be approximately $2.84
trillion dollars, the largest component of which (37.46%) were losses from software failures, at
$1.064 trillion [30].

9 opaque algorithms assessing the risk of an offender repeating a crime, heavily used in the
judicial system of the USA, have been suspect of encoding societal and racial biases [25],
resulting in harsher punishments [43]

10 The two fatal accidents of the Boeing 737 MAX aircraft in 2018 and 2019 have been attributed
to Boeing’s introduction of a software component, called the Maneuvering Characteristics
Augmentation System (MCAS), which was working against the pilot’s maneuvers. MCAS was
unique to that aircraft, and its existence had largely been kept quiet[27].

Reconsidering End-User Development Definitions 11

development to be carried out in the more traditionally professional sense, while others
not.

To illustrate the different modes in which software can be produced, the diversity
of roles that may take up its production, as well as how ubiquitous it is becoming in
modern societies, it may be useful to draw analogies to the production, preparation
and use/distribution/consumption of food in various settings, and the diversity of con-
figurations in which this activity can be encountered11. Food is produced, processed,
prepared, and consumed at various levels of preparation, and engages a wide range of
workers with equally varying expertise, from highly trained, expert chefs who explore
novel gastronomic horizons, to teenagers assembling hamburgers out of industrially
manufactured components, and of course also in non-professional environments, e.g, at
home, for own consumption. They ways in which all handlers of food oversee the supply
of materials, create recipes, and execute them, do have aspects that are specific to the
person’s particular position (e.g., freedom for initiative, or supply of special materials
and tools), but also many other aspects (tools, methods and raw or processed materials)
are shared widely across all configurations, irrespectively of whether they function as
professionals or not.

Such is the diversity of configurations that can found in the production of software as
well, e.g, having highly tailored solutions created for unique clients by highly specialized
experts, or maintaining legacy systems from past eras of computing, or customizing the
same blueprint for different customers. There is of course art,craft, and science in many
stages of software development, and a growing, detailed body of knowledge with regard
to good practices for producing software [7]. However, not all the components that make
up a software product are developed in the same way. For example, even while inventing
novel solutions for a particular problem, a developer will be the end user of packaged
components that encapsulate often complex functionality. There is therefore no way
to exclude particular methods or tools from the arsenal of anything that might for any
number of reasons be considered professional practice.

If EUD’s goal to facilitate design exploration, specification and implementation of
software artifacts, and produce methods and systems that make problem solving through
programming more accessible for people who would not be expected to develop software
without its interventions, then it can provide similar benefits, such as easier implemen-
tation of complex functionality and greater accessibility to unfamiliar systems and to
people who do develop software. Moreover, the methods and tools that EUD produces
can certainly constitute means, with which software services that bear professional
characteristics can be built.

As history has shown, (professional) developers will take up this challenge to em-
power themselves anyway. Taking these into account, given how software development
has changed since the first investigations of EUP, and the multiple connotations of pro-
fessionalism, it might now be opportune to explore other directions for defining end-user
development, than continuing to use the professional/non-professional dichotomy. Table

11 The choice of analogy is not unfamiliar. Algorithms are often compared to food recipes [28],
and there is an abundance of programming “Cookbooks” for various frameworks and Software
Development Kits (SDKs) or problem domains. One important exception is that to a certain
extent, food production is more regulated than software.

12 N. Batalas, I. Lykourentzou, V.J. Khan, P. Markopoulos

Table 3: Disentangling end-user development from professionalism allows more nuance
in classifying development activities. Here, four broad-spectrum examples of domain
and platform are mentioned, but further nuance can be afforded as one looks at different
sub-problems and how they are solved.

End-user development Technical development

Amateur Excel macros with
Visual Basic For Applications

Home automation
with Raspberry Pi

Professional Interactive UI prototyping
with inVision

Game development
with the Unreal Engine

3 shows how end-user development can be a concern orthogonal to professionalism, not
opposite to it.

6 Replacing professional development with technical development

If professionalism is a concern independent from end-user development, then we propose
that the term technical development take its place as the notion that is opposite to end-
user development. In his Theoretical Introduction to Programming, Mills [37] devotes a
section to the notion of Technical Programming:

Technical programming is about defining a specific problem as clearly as possi-
ble, and obtaining a clear solution.[...] It has much in common with the technical
(rather than bureaucratic) aspects of all engineering disciplines.[...] Precise
sub-problems are identified.[...] What is or is not technical, depends on the
techniques available.

The term technical translates only to the characteristics of the development task
itself, not the person performing it, and denotes the kind of engagement with problem-
solving that demands good grounding in methodology, and the ability to identify sub-
problems and to give structure to the problem domain [37]. For example, where end-user
programming would consist of, e.g., using function calls on a platform/abstraction,
Technical Programming would be building the platform/abstraction in the first place, and
exposing the functions that subsequently end-user programmers can call.

Software is developed on some sort of platform, or if viewed in greater detail, various
components of a larger piece of software are developed on several complementary
platforms. A Platform is a framework (be it hardware or software) that supports other
programs. Platform studies [5] offer the theoretical framework both for conducting a
discourse on platforms and when and whether it is useful to view a given system as
such [6], not only from a technical, but also from a cultural perspective. We can regard
as platform the hardware of a computer, an operating system, an API (e.g. OpenGL), a
toolkit (such as Qt), or an application such as the Web-browser. Platforms that enable
software development, expose concepts to the user in which certain types of problems
and solutions can be directly expressed. For example, a programming language like C

Reconsidering End-User Development Definitions 13

enables one to write loops, so when iterating over a set of instructions is the issue, there
is a concept available directly related to that. Likewise, Matlab offers a function for
computing the Discrete Fourier Transform (DFT) of a signal, so a solution that can be
expressed in terms of a DFT can be supported by that platform.

A platform then enables end-user development for a given task, to the extent that
it offers readily accessible functionality, that allows the task to be accomplished in
more or less straightforward ways (e.g, a certain function call), rather than requiring the
implementation of deeper-layered functionality in order to later enable it. On the other
hand, technical development occurs to the extent that the concepts that are related to a
particular solution also need to be developed, in order then to be used.

7 Resolution of the contradiction

We propose that a platform-driven lens can be developed to help determine the nature
of one’s software development task at a specific point in time, as being end-user devel-
opment or technical development, and to what degree. In adopting a platform-driven
view, one would have to acknowledge that end-user development is part and parcel
of any creative programming endeavour, and practiced routinely alongside technical
development in professional or other settings, since making use of the abstractions a
platform offers, is to perform end-user development on it. As these abstractions are
used in the service of solving more technical problems, so does the development task
become of a technical nature, possibly leading to a new layer of abstraction, and the
cycle repeats.

A platform-driven view can help avoid the contradiction that comes up in our
motivating case of clinical psychologists writing Ambulatory Assessment (AA) programs,
where the twofold intent these researchers pursue in writing and distributing their data-
collection programs can have their work classified as either opposite, i.e, end-user
development or professional development. In a platform-drive view, when the encode
tasks of their own problem domain as programs, expressed in familiar terms by way of
purposely-built tools, or software components, the perform end-user development, but
in cases when deeper layers of system functionality needs to be accessed to implement
constructs of the higher-level domain, development becomes more technical in nature.

For example, Batalas et al.[3] offer a set of components written in HTML5, which
render user interfaces for data input when invoked. These components constitute a
layer built on top of the syntactic structural elements of a web-page as defined by the
W3C standard (e.g, div, span, p), and provide a way to write a web-application for
data collection using terminology of the researcher’s domain instead. By using these
components, the researchers perform end-user programming, but they would have to
do more technical work if they wanted to produce new interfaces at the same semantic
level, since they would have to have knowledge of the underlying layer, which is the
web-browser with its Document Object Model, Document Flow, Cascading Style Sheets
and JavaScript APIs.

14 N. Batalas, I. Lykourentzou, V.J. Khan, P. Markopoulos

8 Conclusion

The roles of the end-user and the developer are largely inventions of the platform being
used each time. In other words, it is not only the case that users, who put requirements
forward, and developers, who design and write the code, shape software platforms. It also
happens that through the conventions they employ, abstractions that they put forward
and types of work they allow, software platforms also in effect bring into being the
substance of what their end-users or those who develop on them do. As the platforms
evolve through history, so does our understanding of who the end-user developers are
and what they do, and so do the definitions of end-user development that researchers
consider representative.

In this work however, we have avoided stating any particular wording for another
definition of end-user development, and we regard this to be out of the scope of the
discussion presented here. Rather, we consider it more productive to submit the points
made here to the consideration of the researchers in the field and hopefully enrich relevant
discourse. These points include the legacy origins of viewing end-user development as
opposite to professional development, the extent to which this view is representative
of modern software-development configurations, and the possibility to instead account
not for the identity or role of the developer, nor for their intent in developing a piece of
software, but for the nature of the task (i.e. how technical it is) when performed on a
given platform.

Increasingly, software development takes place on such multiple layers of abstrac-
tion, with platforms and tools for the construction of software already delivered to the
developers, that an end-user development aspect is always involved. For this reason, we
propose that a platform-driven view of end-user development, inclusive of all types of
developers as beneficiaries of EUD’s findings, could better reflect this state of things
and, in this manner, better anticipate the future.

References

1. Adams, C.W.: Small problems on large computers. In: Proceedings of the 1952 ACM national
meeting (Pittsburgh). pp. 99–102 (1952)

2. Barricelli, B.R., Cassano, F., Fogli, D., Piccinno, A.: End-user development, end-user program-
ming and end-user software engineering: A systematic mapping study. Journal of Systems
and Software 149, 101–137 (2019)

3. Batalas, N., Khan, V.J., Franzen, M., Markopoulos, P., aan het Rot, M.: Formal representation
of ambulatory assessment protocols in html5 for human readability and computer execution.
Behavior Research Methods 51(6), 2761–2776 (2019). https://doi.org/10.3758/s13428-018-
1148-y, https://doi.org/10.3758/s13428-018-1148-y

4. Benson, D.H.: A field study of end user computing: Findings and issues. Mis Quarterly pp.
35–45 (1983)

5. Bogost, I., Montfort, N.: New media as material constraint: An introduction to platform studies.
In: Electronic Techtonics: Thinking at the Interface. Proceedings of the First International
HASTAC Conference. pp. 176–193 (2007)

6. Bogost, I., Montfort, N.: Platform studies: Frequently questioned answers. Digital Arts and
Culture 2009 (2009)

Reconsidering End-User Development Definitions 15

7. Bourque, P., Fairley, R.E. (eds.): SWEBOK: Guide to the Software Engineering Body
of Knowledge. IEEE Computer Society, Los Alamitos, CA, version 3.0 edn. (2014),
http://www.swebok.org/

8. Burnett, M., Cook, C., Rothermel, G.: End-user software engineering. Com-
mun. ACM 47(9), 53–58 (Sep 2004). https://doi.org/10.1145/1015864.1015889,
https://doi.org/10.1145/1015864.1015889

9. Choi, B.H.: Software as a profession. Harvard Journal of Law & Technology 33 (2020)
10. Clearver, H.: Industrialism or capitalism? conviviality or self-valorization? (1987),

https://la.utexas.edu/users/hcleaver/hmconillich.html
11. Committee, C.E.U.F., et al.: Codasyl end user facilities committee status report (1979)
12. Conner, T.S., Mehl, M.R.: Ambulatory assessment: Methods for studying everyday life.

Emerging Trends in the Social and Behavioral Sciences: An Interdisciplinary, Searchable, and
Linkable Resource (2015)

13. Cotterman, W.W., Kumar, K.: User cube: a taxonomy of end users. Communications of the
ACM 32(11), 1313–1320 (1989)

14. Cypher, A., Halbert, D.C.: Watch what I do: programming by demonstration. MIT press
(1993)

15. Denning, P.J.: Computing the profession. In: Computer science education in the 21st century,
pp. 27–46. Springer (2000)

16. Dent, M., Bourgeault, I.L., Denis, J.L., Kuhlmann, E.: The Routledge companion to the
professions and professionalism. Routledge (2016)

17. Elliott, P.R.C.: The sociology of the professions. Macmillan International Higher Education
(1972)

18. Ensmenger, N.L.: The computer boys take over: Computers, programmers, and the politics of
technical expertise. Mit Press (2012)

19. Fischer, G.: End-user development and meta-design: Foundations for cultures of participation.
In: International Symposium on End User Development. pp. 3–14. Springer (2009)

20. Fischer, G., Girgensohn, A.: End-user modifiability in design environments. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. pp. 183–192 (1990)

21. Floridi, L., Fresco, N., Primiero, G.: On malfunctioning software. Synthese 192(4), 1199–1220
(2015)

22. Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B., Landay, J.A.: MyExperience: A system
for in situ tracing and capturing of user feedback on mobile phones. In: MobiSys’07: Proceed-
ings of the 5th International Conference on Mobile Systems, Applications and Services. pp.
57–70. ACM (2007). https://doi.org/10.1145/1247660.1247670

23. Greenwood, E.: Attributes of a profession. Social work pp. 45–55 (1957)
24. Hecker, D.E.: Occupational employment projections to 2012. Monthly Lab. Rev. 127, 80

(2004)
25. Huq, A.Z.: Racial equity in algorithmic criminal justice. Duke LJ 68, 1043 (2018)
26. Illich, I., Lang, A.: Tools for conviviality (1973)
27. Johnston, P., Harris, R.: The boeing 737 max saga: lessons for software organizations. Software

Quality Professional 21(3), 4–12 (2019)
28. Knuth, D.E.: The Art of Computer Programming: Volume 1. Addison-Wesley (1973)
29. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaf-

fidi, C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G.,
Shaw, M., Wiedenbeck, S.: The state of the art in end-user software engineering.
ACM Computing Surveys 43(3), 1–44 (2011). https://doi.org/10.1145/1922649.1922658,
http://portal.acm.org/citation.cfm?doid=1922649.1922658

30. Krasner, H.: The cost of poor quality software in the us: A 2018 report. Consortium for IT
Software Quality, Tech. Rep 10 (2018)

16 N. Batalas, I. Lykourentzou, V.J. Khan, P. Markopoulos

31. Lieberman, H.: Your wish is my command: Programming by example. Morgan Kaufmann
(2001)

32. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-user development: An emerging
paradigm. In: End user development, pp. 1–8. Springer (2006)

33. Liskov, B., Zilles, S.: Programming with abstract data types. ACM Sigplan Notices 9(4),
50–59 (1974)

34. Mackay, W.E.: Users and customizable software: A co-adaptive phenomenon. Ph.D. thesis,
Citeseer (1990)

35. McConnell, S.: Code Complete, Second Edition. Microsoft Press, Redmond, WA, USA
(2004), http://portal.acm.org/citation.cfm?id=1096143

36. McLean, E.R.: End users as application developers. MIS quarterly pp. 37–46 (1979)
37. Mills, B.I.: Theoretical introduction to programming. Springer Science & Business Media

(2005)
38. Muffatto, M.: Open source: A multidisciplinary approach, vol. 10. World Scientific (2006)
39. Muzio, D., Ackroyd, S., Chanlat, J.F.: Introduction: Lawyers, doctors and business consultants.

In: Redirections in the study of expert labour, pp. 1–28. Springer (2008)
40. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited research overview: end-user programming. In:

CHI’06 extended abstracts on Human factors in computing systems. pp. 75–80 (2006)
41. Nardi, B.A.: A small matter of programming: perspectives on end user programming. Cam-

bridge, Massachusetts: The MIT Press (1993)
42. Noyes, J., Baber, C.: User-centred design of systems. Springer Science & Business Media

(1999)
43. Pasquale, F.: Secret algorithms threaten the rule of law (2018)
44. Paternò, F.: End user development: Survey of an emerging field for empowering people. ISRN

Software Engineering 2013 (2013)
45. Plusch, S.P.: The evolution from data processing to information resource management. Tech.

rep., ARMY WAR COLL CARLISLE BARRACKS PA (1984)
46. Repenning, A., Ioannidou, A.: What makes end-user development tick? 13 design guidelines.

In: End User Development, pp. 51–85. Springer (2006)
47. Ritchie, D.M., Thompson, K.: The unix time-sharing system. Bell System Technical Journal

57(6), 1905–1929 (1978)
48. Rockart, J.F., Flannery, L.S.: The management of end user computing. Communications of

the ACM 26(10), 776–784 (1983)
49. Rough, D., Quigley, A.: Jeeves-a visual programming environment for mobile experience

sampling. In: Visual Languages and Human-Centric Computing (VL/HCC), 2015 IEEE
Symposium on. pp. 121–129. IEEE (2015)

50. Ruiz Ben, E.: Defining expertise in software development while doing gender. Gender, Work
& Organization 14(4), 312–332 (2007)

51. Segal, J.: Professional end user developers and software development knowledge. Department
of Computing, Open University, Milton Keynes, MK7 6AA, UK, Tech. Rep (2004)

52. Shannon, C.E.: A symbolic analysis of relay and switching circuits. Electrical Engineering
57(12), 713–723 (1938)

53. Snyder, T.D., Tucker, P., Stone, A.: Digest of education statistics. National Center for Educa-
tion Statistics (2002)

54. Thayer, K., Ko, A.J.: Barriers faced by coding bootcamp students. In: Proceedings of the 2017
ACM Conference on International Computing Education Research. pp. 245–253 (2017)

55. US Bureau of Labor Statistics: Occupational Outlook Handbook 2004-05 edition. Bureau of
Labor Statistics (2004)

56. Weinberg, G.M.: The psychology of computer programming; 1971. New York: von Nostrand
Reinhold (1998)

